
Markov Decision Processes for Path Planning in

Unpredictable Environment

Timothy Boger and Mike Korostelev

May 7, 2012

Abstract

In the context of autonomous aerial and land vehicles, path planning
is a challenging problem in unknown and semi-known environments. The
problem we propose to address with this work is how to make decisions
about what paths to take when the environment is known but unknown
modifications have been made. This work will present the problem, the
application of Markov Decision Process to approach solving it as well as a
modification to MDP to formulate a damaged, inconsistent environment.

1 Introduction and Motivation

The motivation of this project is to construct a platform and develop software
and automatons navigation techniques for a fully autonomous quadcopter to
compete in the Drexel IARC (Indoor Aerial Robotics Competition) in May
2012. The quadcopter will be capable of lifting off from a designated spot, flying
through a maze like set of corridors and landing at the designated destination.
In order to do this efficiently path planning and maze solving algorithms will
be combined with computer vision in an on-board Android device.

To create a scope for this problem we will consider a 5x5 maze with a single
origin and a single goal. Multiple paths can be taken from the origin to goal. The
agent traversing the maze has previous knowledge of the maze’s configuration
however after some shock to the environment, some of the maze spaces will
present a hardship for a robot to traverse.

Figure 1: The type of UAV use as the application platform

1



Even with general knowledge of the shock event location, the agent can only
discover these spaces by exploration. The challenge here is, sometimes because
of a newly altered environment, an agent may have to reconsider its path to the
goal. However as the agent is traveling through the maze the first shortcut may
not necessarily be the best one and it may be more beneficial to not take this
path and keep on course until a better one shows up.

This becomes similar to the secretary problem in the optimal stopping theory
described by choosing a time to take a particular action, in order to maximize
an expected reward or minimize an expected cost. To quantify the quality of
the paths a reward system is considered, and since this problem involves a maze,
we also plan to consider maze traversal algorithms like A* with a Manhattan
heuristic to plan the paths. In our preliminary research, we came across papers
that deal with similar exploration problems.

We plan to borrow some concepts in model based reinforcement learning
and Markov Decision Processes for implementation in our scenario. Model free
approaches attempt to learn optimal policies on without explicitly estimating
the dynamics of the surrounding space. While mode based approaches attempt
to estimate the model of the environments dynamics and use it to determine
the value of actions that are possible.

Figure 2: A floorplan of a maze that has been affected by a damaging event
that may change our movement patterns in the affected area.

As a result of this project we want to decide weather it is beneficial to take
a shorter path through a damage affected area or will the price outweigh the
benefit and a shorter path is better.

2



2 Related Work

2.1 A* Algorithm

The A* Search Algorithm, Manhattan Heuristic is a very popular method for
maze solving. Figure 1. shows an optimal route determined by A* Search,
Manhattan Heuristic.

Figure 3: The progress of an agent through a Manhattan grid space using the
A* algorithm with the Manhanttan heuristic

It is important to understand how this method works to understand how our
proposed method differs. It begins by acknowledging the starting location, the
green square, and adds it to the ”open list.” It then looks for the lowest cost
square described by the following equations:

F = G+H

where, G is the movement cost to move from the starting point A to a
given square on the grid, following the path generated to get there. H is the
estimated movement cost to move from that given square on the grid to the final
destination, point B. This lowest costing square is referred to as the ”current
square” and is switched to the ”closed list”. Each of the adjacent 8 squares from
the current square are analyzed by determining which path to each of the squares
is better. The current square becomes the parent and the path each square is
checked. If the square is not walkable or if a is already on the ”closed list” it is
ignored. If a square is walkable and not on the ”open list”, it is added. The F,
G, and H costs of the square is determined and if is already on the open list, its
check, using the G cost, to see if the path to that square is better. A better path
is determined with a lower G cost. If it is, the parent of the square is changed
to the current square and recalculates the G and F scores of the square. The
process stops when the target square is added to the closed list. Now to find the
optimal path, the method works backwards from the target square going from
each square to its parent square, shown as red dots, until the starting square is
reached. Though A* Search does find the optimal path, it does not account for

3



environmental statistics including potential obstacles, shortcuts, or errors that
the hardware solving the maze may experience in certain environments. Markov
Decision Process takes into account some of these aspects.

2.2 Markov Decision Process for Maze Solving

The Markov property is memoryless and when a reinforcement learning task
has this property it is a Markov Decision Process or MDP. MDP is defined as
by the following

S set of possible states where st subset of S
A(st) set of possible actions in state at time t where at subset of A(st)

The MDP policy is a mapping from states to actions,

π∗ : S −→ A

Figure 4: The reinforced learning process

Given the scenario of a 5X5 maze, with the current state St, the best action
to take is evaluated.

MDP essentially works on ”One-step dynamics” where there is a transition
probability associated with each direction. It is denoted by the following equa-
tion,

P a
ss′

= Pr{ss+1 = s
′ |st = s, at = a} for all s, sisubsetofS, asubsetofA(s)

The hardware that is performing the maze solving has a probability of tran-
sitioning to the next state. Example transition probabilities are shown below.

Though the hardware is told to move forward, there is a probability that
an error could occur and the hardware would turn left or right instead. When
weighing in this probability, MDP may avoid dangerous areas in fear that the
hardware will maneuver into a restricted area in error. For the MDP, transi-
tion probabilities are static. For our project, we plan to dynamically change
these transition probabilities to account for obstacles and in-turn determine an
optimal path in the presence of potential path damage. In theory, our method
would weigh the cost of taking the optimally shortest path, that may contain
several obstacles, with that of a safer but longer route.

4



Figure 5: Maze scenario with MDP approach

Figure 6: State transition probability

3 Methodology

In order to evaluate the benefits of implementing Markov Decision Process with
a dynamic state transition probability in our maze traversal routine, we need to
first implement standard MDP.

The idea behind dynamic state transition is that depending on wether we are
in the damage affected area, our probability P a

ss′
of making an error movement

becomes higher as we enter the area. The figure 6 probabilities now become a
function of the states themselves.

With this in mind we need to still maximize our expected rewards:

E{R} where Rt = rt+1 + rt+2 + ...+ rT

The T is the time until the terminal state is reached. When a task requires a
large number of state transitions a discount factor γ is considered.

Rt = rt+1 + γrt+2 + γ3rt+3... =

∞∑
k=0

γkrt+k+1

whereγ, 0 ≤ γ ≤ 1

5



A γ close to 1 corresponds to a farsighted method, and a γ close to zero
corresponds to a nearsighted method. The best state to move to is determined
by the Value of State which is the expected return starting from the state. The
equations that will be affected by our dynamic P a

ss′
are the Bellman Equations

are a set of equations, one for each state and express a relationship between the
value of a state and the value of its successor state. respectively,

Qπ =
∑
S

P a
ss′
∗ [Ra

ss′
+ γ ∗

∑
A(s′ )

π(s
′
, a

′
∗Qπ(s

′
, a

′
)]

V π =
∑
A(s)

π(s, a)
∑
S

π(s, a)P a
ss′
∗ [Ra

ss′
+ γ ∗ V π(s

′
)]

And with our extension, P a
ss′

becomes:

P a
ss′

(s ⊂ Saffected)

4 Experiments

We implemented, A* as well as MDP, A* was implemented in Java Android with
successful results. The android implemenation was straightforward. Random
mazes were generated and solved using the algorithm.

Figure 7: Android A* implementation

We have implemented MDP in MATLAB and tried placing a damaging event
centered at various locations of the maze. This damaging event affected the state
transition probabilities in the locations surrounding it. As a result, the state
values changed accordingly to reflect the damaged area. In the following figure,
a heat map of the values shows where the damage has affected the area. In the
lower left is the goal of agent. In green, is the focus of the damage event.

In the following, we can also see that when we increase the size of the map
and the damage is significantly far away from the goal, the value is affected less.

6



Figure 8: Damaged Environment Heat Maps

Figure 9: Larger Heat Map

5 References

1. http://publications.asl.ethz.ch/files/bouabdallah07design.pdf

2. http://www.nada.kth.se/utbildning/grukth/exjobb/rapportlistor/

2008/rapporter08/sikiric_vedran_08027.pdf

3. Hongshe Dang; Jinguo Song; Qin Guo; , ”An Efficient Algorithm for
Robot Maze-Solving,” Intelligent Human-Machine Systems and Cybernet-
ics (IHMSC), 2010 2nd International Conference on , vol.2, no., pp.79-82,
26-28 Aug. 2010

4. Sutherland, I.E.; , ”A Method for Solving Arbitrary-Wall Mazes by Com-

7



puter,” Computers, IEEE Transactions on , vol.C-18, no.12, pp. 1092-
1097, Dec. 1969

5. http://robotics.ece.drexel.edu/events/iarc/wp-

content/uploads/2011/09/IARC-2012-v2.pdf

6. Heckerman, D. (1998) , A tutorial on learning with Baseian networks.
In M. I. Jordan ed., ‘Learning in Graphical Models’ Kluwer, Dordrecht,
Netherlands.

7. Implementation of Q — Learning algorithm for solving maze problem,
Osmankovic, D.; Konjicija, S.; Dept. of Autom. Control & Electron.,
Univ. in Sarajevo, Sarajevo, Bosnia-Herzegovina 2011

8. Reinforcement learning using chaotic exploration in maze world Morihiro,
K.; Matsui, N.; Nishimura, H.; Hyogo Univ. of Teacher Educ., Japan 2004

8


