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Abstract 
A sensing system capable of detecting the applied force, temperature and strain and quantifying it was 

designed, tested and implemented. Circuit setups were prepared for the three sensors. The circuit setup is 

then integrated with Arduino board for data acquisition. Manufacturer-provided voltage vs force curve 

and Matlab curve fitting tool was used to find the relation between output voltage of the circuit and 

applied force. Similarly, for temperature and strain calculations, manufacturer provided voltage curves 

were used to find the temperature and strain values.To test the performance an experiment, plastic balls of 

different elasticity and fruits of different hardness were used. The experimental result showed that the 

system can detect the applied force , temperature of the balls and also the strain when the ball is 

deformed, and measure it. The long term goal of this project to have a sensing system that could be used 

in biomedical applications, particularly in the tactile imaging system, to get the strain, stress and 

temperature information of the tissue inclusions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Introduction  
TB, AS, FS 

The final project for the Sensors course was to implement a sensor data acquisition robotic arm for the 

purpose of demonstrating the implementation of applicable sensors including force, temperature and 

strain. The force, temperature and strain sensors were attached to the claw of the robotic arm and an 

Arduino Board was used to control the robotic arm autonomously and to perform data acquisition with 

each of the sensors. An ultrasonic sensor has also been used in this project. It provides a very low-cost 

and easy method of distance measurement. The Arduino Board can be programmed using Arduino IDE or 

Maltab. We have used both the programming environments in our project. Both allow the Robotic arm to 

be programmed in any desired manner. The basic program appended to this report sets up the Robotic arm 

to autonomously measure sensory inputs of a small rubber ball and display it serially. The purpose of this 

project was to learn about sensors and system integration by designing, building and testing a sensing 

system. Our sensing system has successfully integrated the following four sensors: Ultrasonic, force, 

temperature and strain gages. The long term goal of this project to have a sensing system that could be 

used in biomedical applications, particularly in the tactile imaging system, to get the strain, stress and 

temperature information of the tissue inclusions.  

The project report is divided into several sections. Section 4 describes the materials used in the project 

and their total cost. In Section 5 the robotic arm implementation is discussed. Section 6 describes the 

operation of the ultrasonic sensor. Section 7 and Section 8 describes the implementation of the force and 

the temperature sensor respectively. Then in Section 9 the strain gage implementation is discussed. Then 

finally the report ends with the discussion and conclusion part. 

 

 

 

 



Materials 
Following is the list of the materials used in the project and the total project cost 

 

Item Description Manufacture Cost 

Robotic Arm Robotic Arm Kit OWI $39.91 

Arduino Microcontroller Arduino $28.80 

Motor Shield Controls DC Motors Adafruit $19.90 

Ultrasonic Ping Sensor 

Sensor that Pings sound 

waves to determine 

distance, etc. 

Parallax $29.99 

Potentiometers Used as encoders Any $5.00 

Force Sensor For gripper Digikey $8.11 

Temperature Sensor For gripper Digikey $ 11.00(pkg of 10) 

Strain Gages For gripper Digikey $28.80(pkg of 5) 

Total   $171.51 

 

 

 

 

 

 

 



Robotic Arm  

Robot Arm Kit (Timothy, Amrita) 

The robotic arm was a method to implement sensor acquisition testing. The robotic arm was constructed 

from a OWI Robotic Arm Edge kit Model OWI-535. The robotic arm is depicted in Figure 1.  

 

 

                                                        Figure 1. OWI Robotic Arm Edge 

The robotic arm sits at 6.3 x 15 x 9 inches and weighs 2.5 on its own. Its original design was powered by 

4 D Batteries and controlled with a 5 switch hardwired controller. The robotic arm has 5 control points 

that allow for commanding the robotic arm gripper to open and close, radial wrist motion of 120°, an 

extensive elbow range of motion of 300°, base rotation of 270°, base motion of 180°, vertical reach of 15 

inches, horizontal reach of 12.6 inches and lifting capacity of 100g. The basic overview of the robotic arm 

is shown in Figure 2. 

 



 
Figure 2. OWI Robotic Arm Edge Key Features 

Some of the added features include a search light design on the gripper and an audible safety gear 

indicator which is included on all 5 gear boxes to prevent potential injury or gear breakage during 

operation. The five-switch wired controller, controls 5 motors contained within the 5 gear boxes that 

power the 5 joints of the robotic arm. The axis's of rotation and degrees of movement of the robotic arm 

demonstrated in Figure 3. 

 

 
Figure 3. OWI Robotic Arm Edge Axis and Degrees of Rotations 



       The ranges of motion and reach capabilities of the robotic arm are shown in Figure 4. 

 

  

Figure 4. OWI Robotic Arm Edge Ranges of Motion and Reach Capabilities 

The robotic arm comes unassembled and was contracted as designed by the manufacture. This robotic 

arm was chosen for its ability to be redesigned as desired. The wired diagram of the robotic arm is shown 

in Figure 5.  

 

Figure 5. OWI Robotic Arm Edge Wire Diagram 

All of the motor control wires can be easily removed and controlled with another desired hardware 

controller. The low cost of the robotic arm allowed for adjustments without damaging the functionality of 

the robotic arm. This limiting factor that controls the price of this and other robotic arms is the type of 



motor used. This type of robotic arm is inexpensive due to it being controlled by DC motors and not 

servos. Figure 6 shows an example of a servo motor that is used in the majority of moderate robotic arms.  

 

Figure 6. DC Motor Controlling Robotic Arm 

The reason a servo motor requires little hardware is because all of it functionality is controlled through 

three wires, a 5v, GND, and Signal input wire. It is controlled with a PWM signal which can control 

direction and speed with a single signal wire. Using a DC motor makes the required controlling hardware 

a little more complex but it reduces the cost of the project. The type of DC motor controlling the robotic 

arm is shown in Figure 7. 

 

Figure 7. DC Motor Controlling Robotic Arm 

This type of motor requires the polarity of the wires to be switched in order to control the direction of the 

motor. This requires some type of additional switching hardware in order for the motors to be controlled 

bi-directionally. 



 

Arduino Board (Timothy) 

Controlling the robotic arm autonomously and to perform data acquisition with each of the sensors, a 

controller was needed. The Arduino Uno microcontroller module has a USB connection interface. The 

Arduino IDE and libraries are open source and there are a large variety of accessory, Shields, that drop 

onto the microcontroller. It has a variety of I/O pins including analog, digital, and PWM ports. The 

Arduino Uno microcontroller is shown in Figure 8. 

 

Figure 8. Arduino Uno Microcontroller 

The Arduino Uno can be powered through the USB connection or with an external power supply. The 

power source is selected automatically. External power can come either from an AC-to-DC adapter or 

battery. The Arduino Uno can be programmed with the Arduino software. Additionals specifications of 

the microcontroller are provided below. 



 

Dc motors can be controlled through the digital pins and the sensor data is acquired through the analog 

pins on the board. However additional hardware is still needed to control the DC motors bi-directionally. 

There are several motor shields designed for the Arduino Uno board. 

Motor Shield (Timothy) 

The DC motors of the robotic arm can be controlled by the Arduino Uno microcontroller using a motor 

shield. The Adafruit Motor Shield Kit for Arduino is a cheap unassembled kit that needs to be soldered 

together and allows for additional soldering as needed. The assembled Adafruit Motor Shield is shown in 

Figure 9. 

 

Figure 9. Adafruit Motor Shield Sitting on Arduino Microcontroller  

 Arduino Uno Specifications 

• Microcontroller: ATmega328  

• Operating Voltage: 5V  

• Input Voltage (recommended): 7-12V  

• Input Voltage (limits): 6-20V  

• Digital I/O Pins: 14 (of which 6 provide PWM output)  

• Analog Input Pins: 6  

• DC Current per I/O Pin: 40 mA  

• DC Current for 3.3V Pin: 50 mA  

• Flash Memory: 32 KB (ATmega328) of which 0.5 KB used by bootloader  

• SRAM: 2 KB (ATmega328)  

• EEPROM: 1 KB (ATmega328)  

• Clock Speed: 16 MHz 



 The motor shield has the capable of controlling the following: 

 2 connections for 5V servos  

 4 H-Bridges: L293D chipset provides 0.6A per bridge (1.2A peak) with thermal shutdown 

protection, internal kickback protection diodes.  

 Can run motors on 4.5VDC to 36VDC. 

 Up to 4 bi-directional DC motors with individual 8-bit speed selection  

 Up to 2 stepper motors with single coil, double coil or interleaved stepping. 

 2-pin terminal block and jumper to connect external power, for separate logic/motor supplies  

 Dimensions: 2.7in x 2.1in x 0.6in 

 Weight: 32g  

There are two provided library that allow for easy control of the various motors. The two libraries are the 

AFMotor.h  and ServoTimer1.h library files, however the AFMotor.h is the only one needed for this 

project. The layout of the motor shield is shown in Figure 10. The motor shield's limit is four DC motors, 

however the robotic arm has 5 dc motors to control. For this specific project, the rotation of the base is not 

needed and is ignored. The other four motors can be controlled using the for motor ports depicted in 

Figure 10. A external power supply to power the motors is needed because the USB cannot supply 

enough power to move multiple motors at once. The external power supply connection is also depicted. 

The motor shield occupies several of the Arduino board pins, but leaves digital pins 2, 9, 10, and 13 and 

the 6 analog pins A0-5 to be used for running other desired hardware. If needed, 5 volts can also be taken 

from the Arduino board to power additional hardware.  

 



 

Figure 10. Adafruit Motor Shield Layout  

The motor shield needs to be setup to use the external power supply. The wire diagram do so is shown in 

Figure 11. The jumper for the motor shield needs to be removed in order to use the external power supply. 

 

Figure 11. Adafruit Motor Shield Power Supply Wire Diagram 

Limit Switches (Timothy, Amrita) 

Another problem that arises when using dc motors over servos is being unable to control or monitor 

precise motor changes. Even if a dc motor is ran in one direction for a set duration and then ran the 

opposite for the same duration, it would not return to its original location. This is due to the mechanics of 

the dc motor. Therefore so type of encoder or sensor is needed to track the robotic arms position. If an 



encoder is not used, the Arduino has no way of monitoring motor changes for closed loop feedback. A 

potentiometer can be used to encode the robotic arms location by providing a ground and five volts to it 

and monitoring the variance through a digital pin on the Arduino. The potentiometer used is shown in 

Figure 12. 

 

Figure 12. Potentiometer Used for Robotic Arm Encoding 

The potentiometer can be mounted to a stationary area near the pivoting section and the dial becomes 

attached to the moving arm using a bracket. The variance is then inputted into the microcontroller. 

 

Integrating the Robot (Timothy) 

Each hardware component, once prepared, was integrated together. The system block diagram is shown in 

Figure 13.  
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                                                Figure 13. System Block Diagram 



The Robotic Arm holds all three sensors and has a Test Zone where the object the sensors are acquiring 

data from is placed. The three sensors, the force, temperature, and strain, required additional circuitry to 

operate and have separate power supply to prepare their measurements, amplification, etc. for the Arduino 

board to accept as an input. The motor shield controls the dc motors of the Robotic Arm and the 

potentiometers send feedback data to the Arduino board to report the robotic arms current location. The 

ultrasonic monitors the test location and senses when an object is ready to be tested by the Robotic Arm 

by pinging the test location. A 6v external power supply is used to power the dc motors of the Robotic 

Arm since the USB connection cannot provide enough power to operate simultaneous dc motor 

operations. Finally, a computer is serial communicating with the Arduino board to accept the sensor data 

passed to it using the Arduino microcontroller to be analyzed in Matlab.  

Programming (Timothy) 

The Arduino board is programmed using the Arduino IDE. The environment is depicted in Figure 14. 

 

Figure 14. Arduino IDE 



The Arduino board can also be directly programmed through Matlab. Both allow the Robotic arm to be 

programmed in any desired manner. The basic program appended to this report sets up the Robotic arm to 

autonomously measure sensory inputs of a small rubber ball and display it serially. When the program is 

uploaded, the robotic arm waits for a rubber ball to be placed in front of the test area. The ultrasonic 

acknowledges an object has been placed in front of it and initializes the robotic arm to tilt down, grip the 

rubber ball for 2 seconds to measure sensory data, and then realizes its grip and return to its home 

position. Figure 15 shows the Arduino controlling the robotic arm and Figure 16 shows the integration of 

the force sensor. 

 

Figure 15. Arduino Controlling the Robotic Arm with Ultrasonic Sensor Only 

 

Figure 16. Integration of Force Sensor 

 

 



 

 Ultrasonics (Timothy,  Amrita) 

The Parallax's PING)))™ ultrasonic sensor provides a very low-cost and easy method of distance 

measurement. The Ping sensor measures distance using sonar. It provides distance measurements of a 2 

cm to 3 m range. It has a power requirements of 5 volts with dimensions: 0.81 x 1.8 x 0.6 in and an 

operating temp range: +32 to +158 °F. The sensor is depicted in Figure 17. 

 

Figure 17. Ultrasonic Ping Sensor and Stand 

 

Force Sensor (Firdous) 
A force sensing system capable of detecting the applied force and quantifying it was designed, tested and 

implemented. A circuitry for calculation of force applied on force sensing resistor has been designed, 

simulated and implemented on breadboard. The circuit setup is then integrated with Arduino board for 

data acquisition. Manufacturer-provided voltage vs force curve and Matlab curve fitting tool was used to 

find the relation between output voltage of the circuit and applied force. To test the performance an 

experiment, plastic balls of different elasticity and fruits of different hardness were used. The 

experimental result showed that the system can detect the applied force and measure it. From the 

measured force, stress (force per unit area) can be calculated which is one parameter to calculate Young’s 

modulus or hardness 

A force sensor measures applied force on some arbitrary target. For this purpose, a force sensing resistor 

is used. A force-sensing resistor (FSR) is a material whose resistance changes when a force or pressure is 

applied (1). It is of small size, low cost and easy to use. 

System Design and Force Sensing Principle 

System Component 

The system components are: 



1. Force Sensing Resistor 

2. Measurement Circuit 

3. Arduino Board 

4. Matlab 

Force Sensing Resistor 

Model 402 round force sensing resistor made by Interlink Electronics was used. The active force sensing 

iameter is 12.7 millimeter. 

 

Circuit for Force Measurement 

Design 

For a simple force-to-voltage conversion, the FSR device is tied to a measuring resistor in a voltage 

divider configuration. The output is described by the equation:  

     
      

     
 

In figure 1, the circuit for force measurement is shown where a pull-down resistor R1= 100k ohms, Vin = 

5V is used. A voltage op-amp (uA741) follower is used to match the impedance requirement of the 

upstream measuring circuit. Vout is the output voltage measured at pin 6 of the op-amp. With this 

configuration, the output voltage increases with increasing force.  

 



 

Figure 18: Voltage Divider Circuit for Force Sensing 

Simulation 

Transient analysis of the circuit from figure 1 has been done. Analysis shows the circuit gives desired 

output.

 

                                   Figure 19: Simulation for circuit of figure 1 

  



Implementation 

The circuit has been implemented in a breadboard. 

Voltage and Force Relationship 

For calculation of force from Vout, this relationship has been used: 

force = exp(log((voltage-6835)/(-2617))/(-0.1054)) 

 

The relationship has been derived from Manufacturer’s data and using matlab curve fitting tool. See the 

detailed derivation in Appendix B – Curve fitting. 

Integration with Arduino Board and Data Acquisition 

Integration with Arduino Board 

The following materials are required and have been used for integration of force sensor with Arduino 

Board: 

1. Matlab 2010b 

2. Arduino Uno board (http://arduino.cc/) 

3. Arduino IDE 

4. Matlab support package for arduino known as ARDUINOIO 

5. Force Sensor with circuit 

Steps for integration 

1. Downloading and installing the IDE (to be done only once). 

a. A step by step driver installation can be found at: http://arduino.cc/en/Guide/HomePage 

and there is no need to duplicate it here. It is a good idea to go through all the 9 steps. 

b. After you have installed the drivers, the motor shield library, and verified that the IDE  

can communicate with the Arduino then you can start using this package. 

2. Downloading and installing the motor shield library (to be done only once): 

a. Download the motor shield library for the motor shield 

here:http://www.ladyada.net/media/mshield/AFMotor-08_12_2009.zip  then uncompress 

it and stick the AFMotor directory into the  arduino-00XX/libraries folder.  

3. Upload srv.pde (or Adiosrv.pde) to the Arduino board (to be done only once): 

a. The srv.pde (or adiosrv.pde) is the "server" program that will continuously  run on the 

microcontroller. It listens for MATLAB commands arriving from  the serial port, 

executes the commands, and, if needed, returns a result. The following instructions are 

needed to upload the srv.pde file into the  controller's flash memory. Note that if you 

don't have the motor shield and don't plan to use it, then you can upload the adiosrv.pde 

file instead (the  instructions are the same, except for the folder location). As long as no 

other file is uploaded later, this step does not need to be repeated anymore, and the 

package can be used as soon as the board is connected to the computer. 

b. From the Arduino IDE, go to File > Open, locate the file srv.pde,  (in the 

ArduinoIO/pde/srv folder) and open it. If a dialog appears asking  for the permission to 



create a sketck folder and move the file, press OK  (this will create a srv folder and move 

the srv.pde file inside it. 

c. Connect the Arduino, make sure that the right board and serial port are selected in the 

IDE, (Tools/Board and Tool/Serial Port) then select  File -> Upload to I/O Board and 

wait for the "Done Uploading" message. 

d. At this point the srv.pde file is uploaded and you can close the IDE, which is not needed 

anymore for the purpose of this package. Actually closing the IDE is suggested, so you 

can be sure that the serial connection to the arduino board is not taken by the IDE when 

matlab needs to use it. Note that the older files adiosrv.pde (IO pins only) and 

motorsrv.pde (motor shield only) are also still available as simplified versions for  you to 

play around and create your own sketch versions. For older boards,   

e. should you have any connection problems, it is suggested that you try to upload and use 

the adiosrv.pde file. 

4. Final Preliminary Steps(to be done only once): 

a. On Windows 7 you should be able to run MATLAB as administrator by  right-clicking 

on the MATLAB icon and select "Run as Administrator". This  will allow the updated 

path to be saved. 

b. From MATLAB, launch the "install_arduino" command, this will simply add the relevant 

ArduinoIO folders to the matlab path and save the path.  

5. Typical Usage: 

a. Make sure the board is connected to the computer via USB port, make sure you know 

which serial port the Arduino is connected to (this is the same port found at the end of the 

drivers installation step), and finally, make sure that the port is not used by the IDE (in 

other words, the IDE must be closed or disconnected), so that MATLAB can use the 

serial connection. 

b. From MATLAB, launch the command a=arduino('port') where 'port' is the COM port to 

which the Arduino is connected to, e.g. 'COM5' or 'COM8' on Windows, for Arduino 

versions prior to Uno) and make sure the function terminates successfully. 

c. Then use the commands a.pinMode, (to change the mode of each pin between input and 

output) a.digitalRead, a.digitalWrite, a.analogRead, and a.analogWrite, to perform digital 

input,  digital output, analog input, and analog output.  

d. Consult the help of the files to get more information about their usage.  

e. Finally, use a.delete to delete the arduino object, (and free up the serial port) when the 

session is over.NOTE: Should the serial port not be relaesed after you clear the arduino 

object, you can use the following commands to release serial connections. 

f. % delete all MATLAB serial connections delete(instrfind('Type', 'serial')); % delete 

MATLAB serial connection on COM3. delete(instrfind({'Port'},{'COM3'})); 

Data Acquisition Steps: 

1. Assuming the above instructions are followed properly, following code should be run in matlab.  

2. The code reads analogpin(0) of Arduino board and converts the serial data into voltage and then 

in force. 

3. The code also graphs the real time discrete data for voltage and force. 

a. Matlab Code is given below 



 

% Author :Firdous Saleheen 

% date 11/14/2011 

% read serial data from force sensing resistor and plot against datapoints 

clear all; 

close all; 

clc;  

s1 = arduino('COM4');                            %define arduino object 

%s1.BaudRate=9600;                               %define baud rate 

%%      

%initialize data acquisition parameters 

clear data; 

numberofData = 100; 

data = zeros(1,numberofData); 

v = zeros(1,numberofData); 

f = zeros(1,numberofData); 

i = 1; 

  

for i= 1:numberofData                   %acquisition of 100 points 

   % read analog data from sensor 

    data(i) = s1.analogRead(0); 

    v(i) = data(i)*(5000/1024); 

 figure(1); 

subplot(2,1,1);  

title('Voltage and Force data plot'); 

 stem(i,v(i));     

xlabel('Number of datapoints'); 

    ylabel('Voltage (mV)'); 

    drawnow; 

    grid on; 

hold on; 

% force voltage relationship is found using manufacturers curve 

% force in newton and voltage in mV 

% force = exp(log((voltage-c)/a)/b) with a= -2617, b = -0.1054, c = 6835 

    subplot(2,1,2) 

    f(i) = exp(log((v(i)-6835)/(-2617))/(-0.1054)); 

    stem(i,f(i),'r'); 

    xlabel('Number of datapoints'); 

    ylabel('Force (N)'); 

    drawnow; 

    grid on; 

    hold on; 

end 

  

 

% close session 

    

delete(s1) 

 



 

Application Software 

Avocado ripeness lookup table was made based on (2). The program is tested based on fictitious data.  

Pseudo code 

1. Take user input of force and strain data 

2. Make force data into stress data by dividing the force with area 

3. Find Young’s modulus for each datapoint 

4. Take the mean of Young’s modulus 

5. Design a look up table 

6. Check the look up table for decision 

7. Display a decision  

Matlab Code 

% avocadomodulus2.m 

% Author Firdous Saleheen 

% Date 11/14/2011 

%% 

clear all; 

close all; 

clc; 

  

%   Take user input of force and strain data. force in kN 

force = [0.010 0.020 0.030 0.040 0.050 0.060 0.070 0.080 0.090 0.100]; 

  

%   Make force data into stress data by dividing the force with area 

diameter = 12.7e-3; 

radius = diameter/2; 

area = pi*radius*radius; 

stress = force./area; 

strain = [1e-3 2e-3 3e-3 4e-3 5e-3 6e-3 7e-3 8e-3 9e-3 10e-3]; 

%% 

  

youngmod = stress./strain 

Y = mean(youngmod) 

%% 

%   Check the look up table for theroshold 

%   Design a lookup table for modulus of elasticity(kN/m^2) Y for avocado 

%   Display a decision  

if Y > 480024 

    disp('Super hard, Green Avocado') 

elseif Y >= 325110 

    disp('Harvested within 5 days, Hard, Green Avocado') 

elseif Y >=  115007 



    disp('Harvested within 5 to 10 days, Medium Hard Avocado') 

elseif Y > 73550 

    disp('Harvested within 10 to 15 days, Medium Soft, Ripe Avocado') 

elseif Y > 48116 

    disp('Harvested within 15 to 20 days, Soft Avocado') 

elseif Y <= 48116 

    disp('Harvested within more than 20 days, Super Soft Avocado') 

  

end 

  

 

Test Code Result 

Y = 7.8941e+004 

Harvested within 10 to 15 days, Medium Soft, Ripe Avocado 

Experimental Setup and Procedures 

Experimental setup 

1. For the experimental setup the following materials are required: 

 Matlab 2010b 

 Arduino Uno board  

 Arduino IDE 

 Matlab support package for arduino known as ARDUINOIO 

 Force Sensor with circuit 

 Avocado of different hardness 

 Plastic balls of different hardness 

 Robot arm 

Procedure for ball hardness experiment 

1. Matlab, Arduino IDE and ARDUINOIO package should be installed into the workstation. 

2. Arduino Board is for controlling robot arm and reading serial data from sensor. 

3. Through the program in IDE the robot arm should reach the target (avocado) and touch it with 

sensor installed in its claw. 

4. The matlab code should be run now which will read the serial port and return the real time 

voltage and force data. 

Procedure for Fruit ripeness check experiment 

5. Matlab, Arduino IDE and ARDUINOIO package should be installed into the workstation. 

6. Arduino Board is for controlling robot arm and reading serial data from sensor. 

7. Through the program in IDE the robot arm should reach the target (avocado) and touch it with 

sensor installed in its claw. 

8. The matlab code should be run now which will read the serial port and return the real time 

voltage and force data. 

9. This data will be used in the application software matlab code as an input where it is converted to 

stress. 



10. Strain will be calculated with the strain gage. Details will be found in strain gage section. 

11. From there a mean value of Young’s modulus will be calculated and displayed the decision based 

on the lookup table.  

Experimental Results 

Ball hardness check experiment has returned the graph of figure 3. 

 

                                     Figure 20: ball experiment sensor data 

Future Work 

Fruit ripeness experiment plan is given. The future task would be to do the experiment according to plan. 

 

  

  

 
 
 
 
 
 
 



Temperature Sensor (Amrita Sahu) 
In this project an analog temperature (LM35 Precision Centigrade Temperature Sensor) was used. An 

analog temperature sensor is a chip that tells us what the ambient temperature is. These sensors use a 

solid-state technique to determine the temperature. That is to say, they don’t use mercury (like old 

thermometers), bimetallic strips (like in some home thermometers or stoves), nor do they 

use thermistors (temperature sensitive resistors). Instead, they use the fact as temperature increases, the 

voltage across a diode increases at a known rate. (Technically, this is actually the voltage drop between 

the base and emitter of a transistor. By precisely amplifying the voltage change, it is easy to generate an 

analog signal that is directly proportional to temperature.  

Because these sensors have no moving parts, they are precise, never wear out, don't need calibration, 

work under many environmental conditions, and are consistent between sensors and readings. Moreover 

they are very inexpensive and quite easy to use. 

Measuring temperature using LM35 Precision Centigrade Temperature Sensor 

                                                         

                           Fig: Connection diagram of the LM35DZ temperature sensor 

 

 

 



                     

                      

To use the LM35 temperature sensor the left pin is connected to power  and the middle  pin to ground. 

Then the right pin will have an analog voltage that is directly proportional (linear) to the temperature. The 

analog voltage is independent of the power supply. 

To convert the voltage to temperature, the following basic formula was used: 

                                           Temp in °C = (Vout in mV) / 10 

 

In the above graph, line ‘a’ is used for the calculation of the temperature.     

Testing the sensors   

Connect a 2.7-5.5V power supply (2-4 AA batteries work fantastic) so that ground is connected to pin 2 

(middle pin), and power is connected to pin 1 (left pin) 

Then connect your multimeter in DC voltage mode to ground and the remaining pin 3 (right).  The 

voltage at room temperature will be around 0.25V. 

 

 

 



These sensors have little chips in them and while they're not that delicate, they do need to be handled 

properly. We have to be careful of static electricity when handling them and make sure the power supply 

is connected up correctly and is between 2.7 and 5.5V DC. 

They come in a "TO-92" package which means the chip is housed in a plastic hemi-cylinder with three 

legs. The legs can be bent easily to allow the sensor to be plugged into a breadboard. We can also solder 

to the pins to connect long wires.  

Reading the analog temperature data 

To read the temperature value from the sensor we have to plug the output pin directly into an Analog 

(ADC) input. No matter what supply we use, the analog voltage reading will range from about 0V 

(ground) to about 1.75V. 

Here we are using a 5V Arduino, and connecting the sensor directly into an Analog pin, we can use the 

following formula to turn the 10-bit analog reading into a temperature: 

Voltage at pin in milliVolts = (reading from ADC) * (5000/1024)  

This formula converts the number 0-1023 from the ADC into 0-5000mV (= 5V) 

Then, to convert millivolts into temperature, use this formula: 

Centigrade temperature = (analog voltage in mV) / 10 

LM35 Precision Centigrade Temperature Sensors 

General Description 

 
The LM35 series are precision integrated-circuit temperature sensors, whose output voltage is linearly 

proportional to the Celsius (Centigrade) temperature. The LM35 thus has an advantage over linear 

temperature sensors calibrated in ° Kelvin, as the user is not required to subtract a large constant voltage 

from its output to obtain convenient Centigrade scaling. The LM35 does not require any external 

calibration or trimming to provide typical accuracies of ±1⁄4°C at room temperature and ±3⁄4°C over a 

full −55 to +150°C temperature range. Low cost is assured by trimming and calibration at the wafer level. 

The LM35’s low output impedance, linear output, and precise inherent calibration make interfacing to 

readout or control circuitry especially easy. It can be used with single power supplies, or with plus and 

minus supplies. As it draws only 60 μA from its supply, it has very low self-heating, less than 0.1°C in 

still air. The LM35 is rated to operate over a −55° to +150°C temperature range.The LM35 series is 

available packaged in hermetic TO-46 transistor packages, while the LM35C, LM35CA, and LM35D are 

also available in the plastic TO-92 transistor package.   



Features 

 
1.  Calibrated directly in ° Celsius (Centigrade) 

2.  Linear + 10.0 mV/°C scale factor 

3.  0.5°C accuracy guarantee able (at +25°C) 

4.  Rated for full −55° to +150°C range 

5.  Suitable for remote applications 

6.  Low cost due to wafer-level trimming 

7.  Operates from 2.7 to 5.5 volts 

8. Less than 60 μA current drain 

9.  Low self-heating, 0.08°C in still air 

10.  Nonlinearity only ±1⁄4°C typical 

 

  



 

Strain Gage 
Firdous Saleheen, Amrita Sahu and Tim Boger 

A strain gage system capable of measuring strain was designed, tested and implemented. A circuitry for 

calculation of strain has been designed, simulated and implemented on breadboard. The circuit setup is 

then integrated with Arduino board for data acquisition. To test the performance an experiment, plastic 

balls of different elasticity and fruits of different hardness were used. The experimental result showed that 

the system can measure strain. From the measured strain can be calculated which is one parameter to 

calculate Young’s modulus or hardness. 

Strain is the amount of deformation of a body due to an applied force (1). More specifically, strain (e) is 

defined as the fractional change in length, as shown in Figure 1. 

 

 
Figure 1. Definition of Strain 

 

 

Strain can be positive (tensile) or negative (compressive). Although dimensionless, strain is sometimes 

expressed in units such as in./in. or mm/mm. In practice, the magnitude of measured strain is very small. 

Therefore, strain is often expressed as microstrain (me), which is e x 10
-6

. 

 

When a bar is strained with a uniaxial force, as in Figure 1, a phenomenon known as Poisson Strain 

causes the girth of the bar, D, to contract in the transverse, or perpendicular, direction. The magnitude of 

this transverse contraction is a material property indicated by its Poisson's Ratio. The Poisson's Ratio n of 

a material is defined as the negative ratio of the strain in the transverse direction (perpendicular to the 

force) to the strain in the axial direction (parallel to the force), or n = eT/e. Poisson's Ratio for steel, for 

example, ranges from 0.25 to 0.3. 

While there are several methods of measuring strain, the most common is with a strain gage, a device 

whose electrical resistance varies in proportion to the amount of strain in the device. The most widely 

used gage is the bonded metallic strain gage. 

 

The metallic strain gage consists of a very fine wire or, more commonly, metallic foil arranged in a grid 

pattern. The grid pattern maximizes the amount of metallic wire or foil subject to strain in the parallel 

direction (Figure 2). The cross-sectional area of the grid is minimized to reduce the effect of shear strain 

and Poisson Strain. The grid is bonded to a thin backing, called the carrier, which is attached directly to 



the test specimen. Therefore, the strain experienced by the test specimen is transferred directly to the 

strain gage, which responds with a linear change in electrical resistance. Strain gages are available 

commercially with nominal resistance values from 30 to 3,000 Ω, with 120, 350, and 1,000 Ω being the 

most common values. 

 
Figure 2. Bonded Metallic Strain Gage 

 

It is very important that the strain gage be properly mounted onto the test specimen so that the strain is 

accurately transferred from the test specimen, through the adhesive and strain gage backing, to the foil 

itself. 

 

A fundamental parameter of the strain gage is its sensitivity to strain, expressed quantitatively as the gage 

factor (GF). Gage factor is defined as the ratio of fractional change in electrical resistance to the fractional 

change in length (strain): 

 

 

 

The gage factor for metallic strain gages is typically around 2. 

In practice, strain measurements rarely involve quantities larger than a few millistrain (e x 10
-3

). 

Therefore, to measure the strain requires accurate measurement of very small changes in resistance. For 

example, suppose a test specimen undergoes a strain of 500 me. A strain gage with a gage factor of 2 will 

exhibit a change in electrical resistance of only 2 (500 x 10
-6

) = 0.1%. For a 120 Ω gage, this is a change 

of only 0.12 Ω. 

 

To measure such small changes in resistance, strain gages are almost always used in a bridge 

configuration with a voltage excitation source. The general Wheatstone bridge, illustrated in Figure 3, 

consists of four resistive arms with an excitation voltage, VEX, that is applied across the bridge. 



 
Figure 3. Wheatstone Bridge 

 

The output voltage of the bridge, VO, is equal to: 

 

 

 

From this equation, it is apparent that when R1/R2 = R4/R3, the voltage output VO is zero. Under these 

conditions, the bridge is said to be balanced. Any change in resistance in any arm of the bridge results in a 

nonzero output voltage. 

 

Therefore, if you replace R4 in Figure 3 with an active strain gage, any changes in the strain gage 

resistance will unbalance the bridge and produce a nonzero output voltage. If the nominal resistance of 

the strain gage is designated as RG, then the strain-induced change in resistance, DR, can be expressed as 

DR = RG·GF·e, from the previously defined Gage Factor equation. Assuming that R1 = R2 and R3 = RG, 

the bridge equation above can be rewritten to express VO/VEX as a function of strain (see Figure 4). Note 

the presence of the 1/(1+GF·e/2) term that indicates the nonlinearity of the quarter-bridge output with 

respect to strain. 

 
Figure 4. Quarter-Bridge Circuit 

 

 

Ideally, you would like the resistance of the strain gage to change only in response to applied strain. 

However, strain gage material, as well as the specimen material to which the gage is applied, also 

responds to changes in temperature. Strain gage manufacturers attempt to minimize sensitivity to 



temperature by processing the gage material to compensate for the thermal expansion of the specimen 

material for which the gage is intended. While compensated gages reduce the thermal sensitivity, they do 

not totally remove it. 

By using two strain gages in the bridge, you can further minimize the effect of temperature. For example, 

Figure 5 illustrates a strain gage configuration where one gage is active (RG + DR) and a second gage is 

placed transverse to the applied strain. Therefore, the strain has little effect on the second gage, called the 

dummy gage. However, any changes in temperature affect both gages in the same way. Because the 

temperature changes are identical in the two gages, the ratio of their resistance does not change, the 

voltage VO does not change, and the effects of the temperature change are minimized. NOTE: In the 

Wheatstone bridge configuration, the active gage and the dummy gage should be on the same vertical leg 

of the bridge. 

 

System Design and Strain Sensing Principle 

System Design 

The system components are: 

5. Force Sensing Resistor 

6. Measurement Circuit 

7. Arduino Board 

8. Matlab 

Strain Gage 

SGT-2C/350-TY11 has been used as strain gage. The nominal value is 350 ohms. The dimension is given 

below: 

 

A = 1.5mm, B = 4.6mm, C = 6.4mm and D = 4.6mm. 

Circuit for Strain Measurement 

Design 

A sample circuit is given below whose example is followed for implementation. The example for the 

configuration of the circuit is given in Appendix. In this circuit the full bridge configuration has been used 

whereas in implementation stage quarter bridge configuration is followed. Some resistors have been 

changed due to availability constraints keeping equivalent resistor values. In order to facilitate remote 



sensing, current excitation is used. The OP177 serves the bridge current to 10mA around a reference 

voltage of 1.235V. The strain gauge produces an output of ~0.5mV/1000me. The signal is amplified by 

the AD620 instrumentation amplifier which is configured for a gain of 100. Full-scale strain voltage may 

be set by adjusting the 100W gain potentiometer such that, for a strain of –3500me, the output reads –

3.500V; and for a strain of +5000me, the output registers a +5.000V. The measurement may then be 

digitized with an ADC which has a 10V fullscale input range. The 0.1µF capacitor across the AD620 

input pins serves as an EMI/RFI filter in conjunction with the bridge resistance of 1kW. The corner 

frequency of the filter is approximately 1.6k Hz. 

 

 

Figure 2: Sample Circuit for Signal Conditioning 



 

Figure 3: Strain Gage Wheatstone bridge and Signal Conditioning Circuit 

Implementation 

The circuit has been implemented in a breadboard. 

Voltage and Strain Relationship 

For calculation of strain from Vout, this relationship has been used: 

strain = 4*v_strain/(2*100*(1200-2*v_strain)) 

Integration with Arduino Board and Data Acquisition 

Integration with Arduino Board 

The following materials are required and have been used for integration of strain gage with Arduino 

Board: 
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6. Matlab 2010b 

7. Arduino Uno board (http://arduino.cc/) 

8. Arduino IDE 

9. Matlab support package for arduino known as ARDUINOIO 

10. Strain gage with signal conditioning circuit 

Steps for integration 

1. See the Force Sensor section for the steps. 

Data Acquisition Steps: 

4. Assuming the above instructions are followed properly, following code should be run in matlab.  

5. The code reads analogpin(2) of Arduino board and converts the serial data into voltage and then 

in strain. 

6. The code also graphs the real time discrete data for voltage and strain. 

a. Matlab Code is given below 

 

% Author :Firdous Saleheen 

% date 11/14/2011 

% read serial data from strain gage and plot against datapoints 

clear all; 

close all; 

clc; 

s1 = arduino('COM4');                            %define arduino object 

%s1.BaudRate=9600;                               %define baud rate 

%%      

%initialize data acquisition parameters 

clear data_strain; 

numberofData = 100; 

data_strain = zeros(1,numberofData); 

v_strain = zeros(1,numberofData); 

strain = zeros(1,numberofData); 

i = 1; 

  

for i= 1:numberofData                   %acquisition of 100 points 

   % read analog data from sensor 

    data_strain(i) = s1.analogRead(2); 

    v_strain(i) = data_strain(i)*(10000/1024); 

 figure(1); 

subplot(2,1,1);  

title('Voltage and Strain data plot'); 

 stem(i,v_strain(i));     

xlabel('Number of datapoints'); 

    ylabel('Voltage (mV)'); 

    drawnow; 

    grid on; 

hold on; 

% strain voltage relation 

    subplot(2,1,2) 



    strain(i) = 4*v_strain/(2*100*(1200-2*v_strain)); 

    stem(i,strain(i),'r'); 

    xlabel('Number of datapoints'); 

    ylabel('Strain (strain)'); 

    drawnow; 

    grid on; 

    hold on; 

end 

  

    

delete(s1) 

 

 

Application Software 

See details in Force Sensor section 

Experimental Setup and Procedures 

Experimental setup 

2. For the experimental setup the following materials are required: 

 Matlab 2010b 

 Arduino Uno board  

 Arduino IDE 

 Matlab support package for arduino known as ARDUINOIO 

 Strain gage with circuit 

 Avocado of different hardness 

 Plastic balls of different hardness 

 Robot arm 

Procedure for ball hardness experiment 

12. Matlab, Arduino IDE and ARDUINOIO package should be installed into the workstation. 

13. Arduino Board is for controlling robot arm and reading serial data from sensor. 

14. Through the program in IDE the robot arm should reach the target (avocado) and touch it with the 

mounting plastic board with strain gage installed in its claw. 

15. The matlab code should be run now which will read the serial port and return the real time 

voltage and strain data. 

Procedure for Fruit ripeness check experiment 

1. The strain will be calculated using the above method and then will be used in application software. 

Experimental Results 

Ball hardness check experiment has returned the graph of figure 3. 



 

Figure 4: ball experiment sensor data 

Discussion 

Conclusion 
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Appendices 

Appendix-A Program Code 

Arduino Code: Basic Robotic Arm Functionality  



#include <AFMotor.h> 

AF_DCMotor motor1(1, MOTOR12_1KHZ); 

AF_DCMotor motor2(2, MOTOR12_1KHZ); 

AF_DCMotor motor3(3, MOTOR12_1KHZ); 

AF_DCMotor motor4(4, MOTOR12_1KHZ); 

const int pingPin = 2; 

int POT = 0; 

int count = 0; 

int x = 0; 

 

void setup() { 

  Serial.begin(9600); 

  motor1.setSpeed(200);   

  motor2.setSpeed(200);   

  motor3.setSpeed(200);   

  motor4.setSpeed(200);  

} 

 

void loop() 

{ 

//************************************************************* 

//PING SENSOR 

  long duration, inches, cm; 

  pinMode(pingPin, OUTPUT); 

  digitalWrite(pingPin, LOW); 

  delayMicroseconds(2); 

  digitalWrite(pingPin, HIGH); 

  delayMicroseconds(5); 

  digitalWrite(pingPin, LOW); 

 

  pinMode(pingPin, INPUT); 

  duration = pulseIn(pingPin, HIGH); 

   

  inches = microsecondsToInches(duration); 

  cm = microsecondsToCentimeters(duration); 

//************************************************************* 

//MOTORS 

  POT = analogRead(1); 

 

      if(cm <= 8) 

      { 

        POT = analogRead(1); 

        delay(3000); 

        while(POT >= 0 && POT < 12) 

        { 

        motor2.run(FORWARD); 

        POT = analogRead(1); 

        } 

        motor2.run(RELEASE); 

 

         

        delay(2000); 



        motor1.run(FORWARD); 

        delay(1000); 

        motor1.run(RELEASE); 

        delay(2000); 

        motor1.run(BACKWARD); 

        delay(900); 

        motor1.run(RELEASE); 

         

         POT = analogRead(1); 

        while(POT >1 && POT < 22) 

        { 

        motor2.run(BACKWARD); 

        POT = analogRead(1); 

        } 

        motor2.run(RELEASE); 

        delay(5000); 

         

      } 

      else 

      { 

      motor1.run(RELEASE); 

      } 

 

  Serial.print(inches); 

  Serial.print("in, "); 

  Serial.print(cm); 

  Serial.print("cm, "); 

  Serial.print(POT); 

  Serial.print("units,  "); 

  Serial.println(); 

   

  delay(100); 

   

} 

 

long microsecondsToInches(long microseconds) 

{ 

  // According to Parallax's datasheet for the PING))), there are 

  // 73.746 microseconds per inch (i.e. sound travels at 1130 feet per 

  // second).  This gives the distance travelled by the ping, outbound 

  // and return, so we divide by 2 to get the distance of the 

obstacle. 

  // See: http://www.parallax.com/dl/docs/prod/acc/28015-PING-v1.3.pdf 

  return microseconds / 74 / 2; 

} 

 

long microsecondsToCentimeters(long microseconds) 

{ 

  // The speed of sound is 340 m/s or 29 microseconds per centimeter. 

  // The ping travels out and back, so to find the distance of the 

  // object we take half of the distance travelled. 

  return microseconds / 29 / 2; 



} 

Appendix B – Curve Fitting 

Relationship between force and voltage 

General model Power2: 

     f(x) = a*x^b+c 

Coefficients (with 95% confidence bounds): 

       a =       -2617  (-3811, -1424) 

       b =     -0.1054  (-0.153, -0.05782) 

       c =        6835  (5659, 8011) 

x = force 

f(x) = voltage 

Goodness of fit: SSE: 2023,  R-square: 0.9986,  Adjusted R-square: 0.9982,  RMSE: 17 

 

                          Figure 21:Output Voltage(v_fsr) vs Force(f_fsr) curve fitting 

 

From the above relation it can be written, 

force = exp(log((voltage-6835)/(-2617))/(-0.1054)) 

Matlab Code 

%Author Firdous Saleheen  

% Date 11/14/11 

% data from interlink manufacturer of fsr 



clear all 

global f_fsr;  

global v_fsr; 

% x axis data force in newton (N) 

f_fsr = [0.1 0.5 1 2 3.1 4.5 5.6 7.1 9 10]; 

% y axis data voltage in mV 

v_fsr = [3500 4000 4250 4400 4500 4600 4650 4700 4750 4800];  

 

function [fitresult, gof] = forcevoltagecreateFit(f_fsr, v_fsr) 

%CREATEFIT(F_FSR,V_FSR) 

%  Create a fit. 

% 

%  Data for 'forcevoltagesensor' fit: 

%      X Input : f_fsr 

%      Y Output: v_fsr 

%  Output: 

%      fitresult : a fit object representing the fit. 

%      gof : structure with goodness-of fit info. 

% 

  

 

%% Fit: 'forcevoltagesensor'. 

  

[xData, yData] = prepareCurveData( f_fsr, v_fsr ); 

%% 

% Set up fittype and options. 

ft = fittype( 'power2' ); 

opts = fitoptions( ft ); 

opts.Display = 'Off'; 

opts.Lower = [-Inf -Inf -Inf]; 

opts.StartPoint = [4129.32491634478 0.0738716357522151 -5.05373756995814]; 

opts.Upper = [Inf Inf Inf]; 

  

% Fit model to data. 

[fitresult, gof] = fit( xData, yData, ft, opts ); 

  

% Plot fit with data. 

figure( 'Name', 'forcevoltagesensor' ); 

h = plot( fitresult, xData, yData ); 

legend( h, 'v_fsr vs. f_fsr', 'forcevoltagesensor', 'Location', 'NorthEast' ); 

% Label axes 

xlabel( 'f_fsr' ); 

ylabel( 'v_fsr' ); 

grid on 

 



Appendix C – Quarter bridge type configuration for strain gage 

 

This section provides information for the quarter-bridge strain-gauge configuration type II. The quarter-

bridge type II measures either axial or bending strain. 

 

 

 

Figure 1-4. Quarter-Bridge Type II Measuring Axial and Bending Strain 

 

A quarter-bridge type II has the following characteristics: 

• One active strain-gauge element and one passive, temperature-sensing quarter-bridge element (dummy 

gauge). The active element is mounted in the direction of axial or bending strain. The dummy gauge is 

mounted in close thermal contact with the strain specimen but not bonded to the specimen, and is usually 

mounted transverse (perpendicular) to the principle axis of strain. 

• This configuration is often confused with the half-bridge type I configuration, with the difference being 

that in the half-bridge type I configuration the R3 element is active and bonded to the strain specimen to 

measure the effect of Poisson’s ratio. 

• Completion resistors provide half bridge completion. 

• Compensates for temperature. 

• Sensitivity at 1000 me is ~ 0.5 mVout/ VEX input. 

 

Figure 1-5. Quarter-Bridge Type II Circuit Diagram 

 

The following symbols apply to the circuit diagram and equations: 

• R1 and R2 are a half-bridge completion resistors. 



• R3 is the quarter-bridge temperature-sensing element (dummy gauge). 

• R4 is the active strain-gauge element measuring tensile strain (+e). 

To convert voltage readings to strain units use the following equation 

 

 

 

 


