

RHEALSTONE BENCHMARKING OF FREERTOS AND THE
XILINX ZYNQ EXTENSIBLE PROCESSING PLATFORM

A Thesis

Submitted to

the Temple University Graduate Board

In Partial Fulfillment

of the Requirement for the Degree

MASTER OF SCIENCE

in ELECTRICAL ENGINEERING

by
Timothy J. Boger

May, 2013

Thesis Approval(s):

Dennis Silage, PhD, Thesis Adviser, Electrical and Computer Engineering

John Helferty, PhD, Electrical and Computer Engineering

Eugene Kwatny, PhD, Computer and Information Sciences

i

ABSTRACT

Embedded system designers require deterministic, real-time operating system (RTOS)

support for the commonly available processing hardware. The Xilinx Zynq Extensible Processing

Platform (EPP) offers software, hardware, and input/output (I/O) programmability on a single

chip. The Xilinx Zynq EPP features a Dual ARM Cortex-A9 MPCore, Advanced Microcontroller

Bus Architecture (AMBA) Advanced eXtensible Interface 4 (AXI4) interconnect, and Xilinx

Kintex-7 series Programmable Logic (PL) which provide the requisite capabilities for the

increasing demands of embedded processing applications. The AMBA AXI4 interconnect

provides high speed point to point interconnections between the ARM processor cores and the

Field Programmable Gate Array (FPGA) structure allowing for rapid data transmission to

optimize system performance. The incorporation of an RTOS ensures predictable execution times

of applications. Benchmarks, such as the Rhealstone, were developed to provide designers with a

method of evaluating and comparing these multitasking RTOSs running on various hardware

platforms. This thesis research performs Rhealstone benchmarking and evaluates the AMBA

AXI4 interconnect performance while executing FreeRTOS on the ARM core of the Zynq EPP

device.

ii

TABLE OF CONTENTS

ABSTRACT .. i

LIST OF FIGURES ... v

LIST OF TABLES .. vi

NOMENCLATURE .. vii

CHAPTER 1

INTRODUCTION ... 1

1.1 Motivation .. 1

1.2 Research Objectives ... 7

1.3 Organization of the Thesis ... 7

CHAPTER 2

BACKGROUND ... 9

2.1 ARM Architecture ... 9

2.1.1 Introduction ... 9

2.1.2 ARM Cortex A9 .. 10

2.2 AMBA Bus .. 12

2.3 Zynq Extensible Processing Platform .. 13

2.3.1 Introduction ... 13

2.3.2 Xilinx Zynq-7000 Evaluation Kit ... 15

2.3.3 ZedBoard... 16

2.4 Real-Time Operating Systems ... 17

2.5 FreeRTOS .. 18

2.6 Rhealstone: Real-Time Benchmark ... 20

2.6.1 Task Switching Time .. 21

2.6.2 Preemption Time ... 21

2.6.3 Interrupt Latency ... 22

2.6.4 Semaphore Shuffling Time ... 23

2.6.5 Deadlock Breaking Time .. 23

2.6.6 Intertask Messaging Latency .. 24

2.6.7 Calculating the Rhealstone Performance Number .. 25

iii

CHAPTER 3

DESIGN TOOLS ... 27

3.1 Introduction .. 27

3.2 Xilinx ISE 14 ... 27

3.3 PlanAhead .. 28

3.4 Embedded Design Kit .. 30

3.5 Xilinx Platform Studio ... 30

3.5.1 Base System Builder Wizard .. 31

3.5.2 AXI Interconnection ... 32

3.5.3 Hardware Platform Configuration .. 32

3.6 Software Development Kit .. 33

3.6.1 Board Support Package ... 35

3.6.2 Xilinx C Project .. 35

3.6.3 First Stage Boot Loader .. 35

3.6.4 Program FPGA .. 36

3.6.5 XMD Console ... 36

3.7 ChipScope Pro ... 37

3.8 Tera Term .. 37

CHAPTER 4

ZYNQ EPP OPERATING SYSTEMS .. 38

4.1 Introduction .. 38

4.2 Bare-Metal ... 38

4.3 Linux .. 39

4.3 FreeRTOS .. 40

CHAPTER 5

UTILIZING THE ZYNQ EPP HARDWARE ... 41

5.1 Introduction .. 41

5.2 Booting ... 41

5.3 Pmod Connection ... 42

CHAPTER 6

RESULTS .. 43

6.1 Introduction .. 43

iv

6.2 Bare-Metal - Single Core ... 43

6.3 FreeRTOS - Multitasking Single Core ... 44

6.4 Benchmarking .. 44

6.4.1 FreeRTOS Task-Switching Time .. 45

6.4.2 FreeRTOS Preemption Time .. 46

6.4.3 FreeRTOS Semaphore Shuffle Time .. 48

6.4.4 FreeRTOS Deadlock Breaking Time .. 50

6.4.5 FreeRTOS Intertask Messaging Latency .. 52

6.4.6 FreeRTOS Rhealstone Benchmark ... 54

CHAPTER 7

CONCLUSION .. 55

CHAPTER 8

FUTURE WORK ... 56

REFERENCES .. 57

APPENDICES

A: TASK-SWITCHING CODE .. 62

B: PREEMPTION TIME CODE ... 67

C: INTERTASK MESSAGE LATENCY CODE ... 73

D: DEADLOCK-BREAK TIME CODE ... 79

E: SEMAPHORE SHUFFLE TIME CODE .. 85

v

LIST OF FIGURES

Figure 1: Kernel Layout: (a) Monolithic (b) Modular (c) Extensible (d) Layered 2

Figure 2: Typical Symmetric Multiprocessing System Layout ... 3

Figure 3: Typical Asymmetric Multiprocessing System Layout ... 3

Figure 4: Message Passing using the MULTIBUS II .. 6

Figure 5: Cortex-A9 Dual MP Core Architecture .. 11

Figure 6: Xilinx Zynq-7000 Extensible Processing Platform Architecture 14

Figure 7: Zynq 7000 Evaluation Kit .. 16

Figure 8: ZedBoard .. 17

Figure 9: Rhealstone Benchmarking: Task-Switching Time ... 21

Figure 10: Rhealstone Benchmarking: Preemption Time .. 22

Figure 11: Rhealstone Benchmarking: Interrupt Latency .. 22

Figure 12: Rhealstone Benchmarking: Semaphore-Shuffle Time ... 23

Figure 13: Rhealstone Benchmarking: Deadlock-Break Time .. 24

Figure 14: Rhealstone Benchmarking: Intertask Message Latency ... 24

Figure 15: Design Tools Block Diagram – Xilinx ISE 14 ... 28

Figure 16: Design Tools Block Diagram – PlanAhead .. 29

Figure 17: Design Tools Block Diagram – XPS .. 31

Figure 18: Processing Platform Peripheral Configuration – XPS .. 33

Figure 19 Design Tools Block Diagram – SDK .. 34

vi

LIST OF TABLES

Table 1: FreeRTOS Rhealstone Benchmarks..……………………………….....………………. 54

vii

NOMENCLATURE

ACP Accelerator Coherence Port

AHB AMBA High-performance Bus

AMBA Advanced Microcontroller Bus Architecture

AMP Asymmetric Multi-Processing

APB Advanced Peripheral Bus

API Application Programming Interface

APSL Advanced Processor Systems Laboratory

ARM Advanced RISC Machine

ASB Advanced System Bus

ATB Advanced Trace Bus

AXI Advanced eXtensible Interface

BIF Boot Image File

BSB Base System Builder

BSP Board Support Package

CPU Central Processing Unit

DMAC Direct Memory Access Controller

EPP Extensible Processing Platform

EDK Embedded Development Kit

ELF Executable and Linkable Format

EMIO Extended Multiplexed I/O

FPGA Field-Programmable Gate Array

FSBL First Stage Boot Loader

GDB GNU Debugger

GPIO General Purpose I/O

HPS Hard Processor System

HDL Hardware Descriptive Language

I/O Input/Output

IP Intellectual Property

ISA Instruction Set Architecture

ISS Instruction Set Simulator

ISE Integrated Software Environment

JTAG Joint Test Action Group

MHS Microprocessor Hardware Specification

MIO Multiplexed I/O

MMU Memory Management Unit

MPC Message Passing Coprocessor

OCM On-Chip Memory

OS Operating System

PL Programmable Logic

PLB Processor Local Bus

Pmod Peripheral Module

PPC Power PC

PS Programming System

QEMU Quick EMUlator

QSPI Queued Serial Peripheral Interface

RTL Register Transfer Level

RISC Reduce Instruction Set Computer

RTOS Real-Time Operating System

SCDL System Chip Design Laboratory

SDK Software Development Kit

SIMD Single Instruction-Multiple Data

SMP Symmetric Multiprocessing

SCU Snoop Control Unit

SoC System-On-a-Chip

TCL Tool Command Language

TDP Targeted Design Platforms

UCF User Constraints File

UART Universal Asynchronous Rx/Tx

XMD Xilinx Microprocessor Debugger

XML eXtensible Markup Language

XMP Xilinx Microprocessor Project

XPS Xilinx Platform Studio

ZED Zynq Evaluation & Development

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

The goal of this thesis research is to provide performance benchmarks for the Xilinx Zynq-7000

Extensible Processing Platform (EPP) and to provide a premise for future embedded design. The

Xilinx Zynq EPP is capable of running Asymmetric Multiprocessing (AMP) of a Real-Time

Operating System (RTOS) called FreeRTOS. [1] The Dual ARM Cortex A-9 MPCore processor

is provided with various features including a primary Advanced Microcontroller Bus Architecture

(AMBA) Advanced eXtensible Interface 4 (AXI4) 64-bit interconnect that can be used with

various soft-core and hard-core peripherals and the 28nm Programmable Logic (PL) of the Xilinx

Kintex-7 series Field Programmable Gate Array (FPGA). Embedded system designers require

these benchmarks in order to evaluate and design an efficient Processing System (PS).

Multicore processor architectures have the potential to provide increased performance and power

efficiency, but at the cost of programming complexity. [2] The complexity involved has been the

hindrance in the widespread adoption of multicore architecture. Multicore systems can be

implemented in Symmetric Multiprocessing (SMP) or AMP modes. These modes refer to how the

Operating System (OS) kernel will run on a system that has more than one Central Processing

Unit (CPU) or core.

A kernel is the underlying main component of the majority of computer OS. It bridges the gap

between the hardware and the application executing on the PS. The kernel's responsibilities

include managing the communication between hardware and software components to allocate the

system's resources accordingly through system calls and inter-process communication. The

2

hardware components it manages include the processor and I/O devices. [3] There are various

types of kernel structures including monolithic, modular, extensible and layered. Figure 1 depicts

these structures.

Figure 1: Kernel Layout: (a) Monolithic (b) Modular (c) Extensible (d) Layered [4]

Monolithic kernels are the most primitive with the OS code executing in the same address space.

This direct intercommunication is highly efficient and increases performance, but makes it

difficult to manage and maintain. Modular kernels allow for better overall functionality with ease

of management due to its modular nature, but lacks performance. Layered kernels are used to

divide components into manageable layers, but have degraded performance when communication

between multiple levels is required. Extensible kernels, also known as microkernels, execute

services in user space as servers to improve modularity and maintainability while also having a

lower level skeletal nucleus that controls basic process synchronization. [4]

With SMP, the kernel itself can run on any processor and can run simultaneously on multiple

processors. SMP handles programs using multiple processors sharing a common OS. There is a

single copy of the operating system that supervises all of the processors and shares everything

symmetrically among them. The processors share memory and a bus as shown in Figure 2. [5]

3

Figure 2: Typical Symmetric Multiprocessing System Layout [6]

AMP is the employ of more than one CPU with a specified role with each kernel running

exclusively. This means each processor shares the same physical memory, but have

independently running OS on each core. With this method, processes can run on either processor.

Figure 3 shows a typical AMP system layout. [7]

Figure 3: Typical Asymmetric Multiprocessing System Layout [8]

There are heterogeneous and homogeneous processor systems. A heterogeneous system is the use

of different processor cores with one for general-purpose work and the other for such things as

DSP. The advantage of this approach is the ability to match processor cores with features that are

appropriate for on-chip tasks applications. Tailoring a processor core to a specific task forces the

processor to limit its number of abilities to no more than are required by removing unneeded

features from each processor. The heterogeneous design needs a different software-development

tool set, which would include a compiler, assembler, debugger, instruction-set simulator, and OS

for each of the different processor cores used in the system design. [9] Heterogeneous processors

4

generally do not use SMP due to the processors not being capable of executing identical

instructions from the same copy in memory.

Homogeneous processors, such as Xilinx's Zynq EPP with two ARM cores, run the same code

from a single copy in memory using SMP. These processors can also be used with AMP creating

a more independent processor. In this case each processor can run different code from its personal

local memory. AMP with the Xilinx Zynq EPP, for example, could utilize a RTOS on one

processor while running Linux on the other or a RTOS could be resident on both cores. [1]

Multicore processing can be somewhat complex and intimidating, so it is important to have an OS

developed that offers ease of use independent of the system configuration. OSs can provide

autonomy to process load balancing and handling which alleviates concern about how the

processors are explicitly handling the workload. Some OS are designed to automatically run

processes on any available processor to provide transparent mapping of multithreading on a

multicore architecture. [2] Multithreading is the ability of efficiently executing multiple threads

running on a single core by utilizing thread-level and instruction-level parallelism.

Multiprocessing involve the use of multiple complete CPUs in a single system. These

complimentary systems can sometimes be combined in systems with multiple multithreading

cores. [10]

FPGAs are used to develop soft-core processors that are used for various embedded applications.

The use of FPGAs as soft-core processors such as the 32-bit Xilinx MicroBlaze have some utility,

but have various complications including synthesizing the various interconnects on the

programmable fabric. The challenge of using FPGAs with embedded CPUs lies in the

communication between the processor and PL. Using a processing platform, a processor centric

design, compared to an FPGA has various advantages. In the most recent version of the FPGA

architecture by Xilinx, the Vertex FX FPGA series, Power PC (PPC) cores are used as hard

5

Intellectual Property (IP). [11] IP is an algorithm or function that is provided to designers through

licensing from software developers. These predefined functions are intended to save time by

prebuilt solution for such things as processors and bus interfaces. [15]

A FPGA centric design means that the FPGA is the master and PPC is the slave. Development

requires the configuration of the FPGA in order to use the CPU cores and cannot boot

independently of the FPGA fabric. On the other hand, the Zynq EPP includes a Dual ARM

Cortex-A9 as hard IP. This means the ARM PS is the master and the FPGA is the slave.

Additionally, the CPU can boot without powering or configuring the FPGA. [11]

The Zynq EPP utilizes the AMBA AXI4 interconnects in its System-on-a-Chip (SoC) design. An

embedded designer needs to understand how to utilize the hardware they are given. The bus

interconnect, in any system, is the communication link between hardware. To understand how to

utilize the AMBA AXI4 interconnect, we can look at previous bus architectures and methods

used to handle multiprocessing systems. The Multibus is an asynchronous bus standard developed

by Intel in 1974. The Multibus was designed to be robust and became a widely used industry

standard in the 1980s with systems still currently operational. [12]

The Intel MULTIBUS II was designed to address the multiprocessing problem caused by the

increased demands for processing power. The MULTIBUSS II was designed to improve system

performance and reduce the complexity of multiprocessing systems. It introduced the mechanism

of message passing to improve the performance of a system and in doing so simplified

multiprocessing system implementations. The mechanism that supports this message passing is

the Message Passing Coprocessor (MPC).

There are various ways to implement a multiprocessing system. Traditionally, processors can

share data using the bus and a common memory area. This memory is either available globally or

dual-ported into the local memory of one processor. [12] Another method for data sharing is to

6

have a host CPU and a disk controlling with communication done through message passing. The

use of the MPC in this manner is demonstrated in Figure 4.

Figure 4: Message Passing using the MULTIBUS II [13]

Depending on how this message passing is implemented, the bus can become a bottleneck.

However, efficiently and effectively getting data quickly into the local memory of the second

CPU can achieve performance improvements. The MULTIBUS II supported all of these methods

for communication.

The design objectives behind using the AMBA for SoC designs is to improve processor

independence by encouraging modular system design, the development of reusable libraries for

peripherals and system IP and on-chip communication that minimizes silicon infrastructure while

maintaining low power and high performance. [14] These IP blocks address the various needs of

embedded designers with pre-designed cores that can be implemented on Xilinx FPGA devices.

[15] For example, there are IP blocks designed for Xilinx Targeted Design Platforms (TDP)

provided by Xilinx and its Alliance Program Members. TDPs are development kits released with

boards, Integrated Software Environments (ISE) Design Suite tools, IP cores, reference designs,

and designer support for initial application development. [16]

7

The System Chip Design Laboratory (SCDL) is a research facility of the Department of Electrical

and Computer Engineering at Temple University’s College of Engineering. SCDL was started in

1999 and is a descendant of the Advanced Processor Systems Laboratory (APSL) established in

1987. The laboratory worked with the Multibus II multiprocessor computer system which utilized

the Intel iRMX III real-time multitasking operating system. The SCDL pursues innovative

investigations in the SoC design methodology utilizing hard processor IP cores, configurable SoC

and soft core architectures on FPGAs, on-chip busing arbitration architectures, and heterogeneous

multiple processor RTOS. [38]

1.2 Research Objectives

The objective of this thesis is to develop embedded operating system support for the Xilinx Zynq

EPP with multitasking FreeRTOS. Doing so will develop an understanding of effectively

implementing FreeRTOS on the platform and to produce benchmark results that can be used

evaluate the AMBA AXI4 interconnect performance. The Rhealstone real-time benchmark will

be used to perform this benchmarking. This will provide embedded designers with a platform for

further implementation on the Zynq EPP. This work will be added to the Xilinx and Zynq

Evaluation & Development (Zed) board websites as a resource to inform and strengthen the Zynq

community.

1.3 Organization of the Thesis

The thesis is organized as follows. A background is given in order to lay the foundation for this

work. The ARM Architecture is discussed, followed by an outline of the ARM Cortex A9

architecture. AMBA is described to develop an understanding of its associations with the Dual

ARM processor. The Zynq EPP architecture is discussed along with Zynq EPP platform which is

utilized on both the Xilinx Zynq Evaluation Board and the Zed Board. A brief discussion about

RTOSs followed by a discussion of implementing FreeRTOS is provided. The Rhealstone

8

Benchmark's use and implementation is reviewed and its application to the work in this thesis is

discussed. The Design Tools used to develop on the Zynq EPP is review and key software and

hardware design elements are discussed. The thesis results are discussed and concluded. Finally,

the framework for future work with the Zynq EPP is discussed.

9

CHAPTER 2

BACKGROUND

2.1 ARM Architecture

2.1.1 Introduction

ARM is known for its high performance for low price and low power consumption. The reduced

instruction set computer (RISC) instruction set architecture (ISA) of the ARM is not designed to

produce the most powerful processor, but to create a processor capable of powering the latest

technologies at a price that could be used in low-cost processing systems. The advantages of

RISC stemmed from the concept that performance could be improved through smaller chip sizes

with shorter signal paths implying shorter instruction cycles which results in a faster processor. A

smaller die size is a result of the RISC chip being simpler and therefore requiring fewer

transistors to implement the smaller instruction set. RISC was intended to shorten the design

process through smaller chips with fewer instructions making the design less complicated and

ultimately taking less time to complete and debug. [17]

The history of the ARM resides in the United Kingdom with Acorn Computers Ltd. ARM was

established in Cambridge, originally know as Acorn RISC Machine, and developed its first ARM

chip between 1983-1985. The company became popular when Acorn's British Broadcasting

Corporation (BBC) Microcomputer which was widely used in UK classrooms during the 1980's.

In 1985, the ARM1 was released and focused on improved instruction sets in order to improve

and maximize performance of the systems using it. [17]

The Archimedes home computer launched in 1987 was the first commercial product using the

ARM. It utilized the ARM2 8 MHz processor and was the first RISC processor available in a

low-cost PC. The intent of these first two processors was to offer quality performance in a low-

10

cost system. Since Intel and Motorola-based computers competed on the market with their high-

end personal and workstation computer systems the ARM based systems were overshadowed.

[17]

The release of the ARM3 in 1989 was designed to improve the performance of the ARM by

including a 4 Kbyte on-chip data and instruction cache. This 25 MHz processor could run at a

higher clock rate due to the denser fabrication of the chip compared to its predecessors and

inherently improving the overall performance while using the same support chips and low cost

memory as the ARM2. In 1990 the ARM2aS, a static version of the processor, added low power

consumption to the list of ARM feature which opened ARM to the personal hand-held and

communications devices market. Though this specific processor only reached prototyping stage

of mobile devices, it sparked greater interested in RISC and the ARM family. [17]

With financial growth of Acorn and the increasing demand for RISC processors, an agreement

was made between Acorn, VLSI Technology and Apple. This resulted in the foundation of ARM

Ltd and the name change to the Advanced RISC Machine (ARM). ARM Ltd licenses its designs

to chip foundries for royalties rather than establishing its own fabrication facilities. VLSI

Technology, who had built all previous ARM chips, was the first licensee. ARM Ltd's first

development after the ARM3, was the ARM6 which included full 32-bit addressing. This was

designed to meet the requests of its new partner, Apple. [17] ARM, since then, has continued its

growth in various avenues including its ARM Cortex A9 being used on the Zynq EPP.

2.1.2 ARM Cortex A9

ARM Cortex™-A9 processor is available as either a single core or configurable multicore

processor with either synthesizable or hard-macro implementations. The ARM Cortex-A9

processor is available as a single core or MPCore model with up to four cores. MPCore is an

integrated SMP or AMP with multiple processors in a single device. The Cortex-A9 processor is

11

a power efficient, high performance option for a cost-sensitive system with power or thermal

constraints. Full virtual memory capabilities are provided by the L1 cache and implemented byt

the ARMv7-A architecture. It can execute 32-bit ARM instructions as well as 16-bit and 32-bit

Thumb instructions and 8-bit Java bytecodes. [18] Figure 5 shows the Cortex-A9 Dual MP Core

Architecture.

Figure 5: Cortex-A9 Dual MP Core Architecture [19]

The processor was designed with high efficiency in mind with dual-issue superscalar, out-of-

order, and a speculating dynamic length pipeline. The Cortex-A9 architecture supports 16, 32 or

64KB configurations of four way associative L1 caches and an optional L2 cache controller up to

8MB. The Cortex-A9 has physical IP available for designers. The processor comes with the ARM

Development Suite 5 tools and CoreSight Debug & Trace IP. CoreSight is an on-chip debug and

real-time trace kit for SoC designs utilizing ARM processors to optimize debugging the system.

[20]

The Cortex A-9 MPCore with 2 cores integrated as hard IP component on the Zynq EPP is a 800-

MHz dual-core processor that supports both SMP and AMP. Each processor core has a dual-issue

superscalar pipeline, the NEON processing engine, a single- and double-precision floating-point

12

unit (FPU), and 32-KB instruction and 32-KB data cache with cache coherence. The ARM

Cortex-A series processors utilize NEON technology which is a 128-bit Single Instruction

Multiple Data (SIMD) engine used to process multimedia formats. [21] SIMD is an extension to

the architecture of the ARM providing operation extensions for registers and floating-point. [22]

The Cortex-A Series also includes a Memory Management Unit (MMU), a Snoop Control Unit

(SCU), shared 8-way 512-KB associative L2 cache, generic interrupt controller, Direct Memory

Access Controller (DMAC), and a 32-bit general purpose timer on the chip. [19] The ARM

Cortex-A9 processor, when combined with embedded peripherals, interfaces, and on-chip

Memory (OCM), create a Hard Processor System (HPS). Connecting the HPS and FPGA of the

SoC with a high-bandwidth on-chip backbone provides large bandwidth for sharing data between

the ARM processor and hardware accelerators within the FPGA fabric.

2.2 AMBA Bus

The ARM Cortex A9 AMBA 3 located on the chip is the backbone for communication within the

SoC. The AMBA has been widely used as an on-chip bus architecture in many SoC designs. The

AMBA has since exceeded its initial design potential and has gone beyond the use in

microcontroller devices. The AMBA 1 consists of the Advanced Peripheral Bus (APB) and

Advanced System Bus (ASB). In the second generation, AMBA 2, ARM added a single clock-

edge protocol called AMBA High-performance Bus (AHB). AMBA 3, the third generation

AMBA, reached higher performance interconnects by adding the Advanced eXtensible Interface

(AXI). It also included the Advanced Trace Bus (ATB) which was designed to work with the

CoreSight on-chip trace and debug tools. [24]

The AMBA 3 specifications replaced AMBA 2, but AMBA 2 peripherals can still be used on

AMBA 3 based systems. The protocol specification of the AMBA family is an ARM open

standard for on-chip buses and provides solutions to SoC interconnections and functional block

13

management for embedded design with multiple processors and multiple peripherals. [23] The

AMBA 3's interface protocol specification encompasses all the required on-chip data

traffic requirements. These requirements include high data throughput from data

intensive processes, low bandwidth communication with low power and gate count, and

on-chip testing and debugging. [24]

AMBA 3's AXI is an interface and a protocol, but is not a bus. There is no bus arbitration because

it is utilizes point to point connections. [53] AXI provides support for data traffic throughput with

five unidirectional channels and out-of-order data transaction capabilities. This allows for high

speed operations through the pipelined interconnections, simultaneous reading and writing

transactions, and efficient high latency peripheral support and bridging between frequencies for

power management. The AHB interface enables high efficiency interconnects between single

frequency subsystems of simpler peripherals when the AXI is not need. The structure of the AHB

is a fixed pipelined and an unidirectional channel allows for back compatibility with AMBA 2

peripherals. [24]

APB provides low bandwidth transaction support to access necessary configuration registers in

peripherals as well as data traffic in peripherals with low bandwidth. This interface is highly

compact and low power isolates data traffic from the AHB and AXI high performance

interconnects. ATB adds a data trace interface for data diagnostics in a trace system. This

provides debugging capabilities due to the trace components and bus sitting in parallel with

interconnects and peripherals. [24]

2.3 Zynq Extensible Processing Platform

2.3.1 Introduction

The Zynq EPP 7000 family of devices combine the hardware programmability of an FPGA and

the software programmability of a processor. The overview of the hardware is depicted in Figure

14

6. The Zynq EPP platform's PS includes the Dual ARM Cortex-A9 MPCore that utilizes 32kB

instruction and data L1 cache per core, shared 512kB L2 cache, FPU and NEON media engine.

The memory interfaces include 256kB OCM in addition to NAND Flash and NOR Flash Memory

Controller which includes DDR2, LPDDR2, and DDR3. Peripherals include Queued Serial

Peripheral Interface (QSPI), USB2.0, GbE, CAN, SDIO, Universal Asynchronous Receiver and

Transmitter (UART), SPI, I2C, General Purpose I/O (GPIO), 12bit 1 Mbps ADC, AES and SHA-

256. [25]

There are four available models of the Zynq EPP designed for various applications. The available

FPGA types for each of the model types include the Artix-7 for Z-7010 and Z-7020 and the

Kintex-7 for Z-730 and Z-7045. The FPGA sizes vary and include logic cells that range from

30k-350k, block RAM ranging from 240kB-2,180kB, DSP Slices from 80-900, and user I/Os of

150-400. The Kintex-7 devices also have eight PCI Express2 and 12.5 Gbps Transceivers. Quick

EMUlator (QEMU), a virtual platform, is used for the model of the processing subsystem. [25]

Figure 6: Xilinx Zynq-7000 Extensible Processing Platform Architecture [26]

15

Xilinx implemented AMBA on the Zynq as two switch matrices. The AMBA AXI interconnect

exists in two areas on the Zynq EPP. One is grouped around the DRAM controller and the other

is used for general peripherals. There are two switches on the peripheral side. The first has one

connection for a hard static memory controller, eight hard I/O controller blocks, five connections

for the CPU cluster, and four stubs that end at the programmable fabric. The second has five

connections ending in the fabric, two connections for the hard DRAM controller, and two CPU

ports. [27]

One of these five ports supports the Accelerator Coherence Port (ACP). This port provides the

ability for the accelerator to snoop the processor cluster’s caches, but not the cluster’s OCM so a

CPU task could leave a control and data block in cache. From here, an accelerator in the

programmable fabric can read the block directly from cache and therefore avoiding a write-back

to DRAM. This protocol is not symmetric and therefore the accelerators are not fully coherent.

This is because the CPU reads and writes do not snoop memory in the fabric. The AMBA I/O

ports, the DRAM controller accessible AXI ports, and ACP provide the Zynq EPP with a range of

programmable fabric structure design possibilities. The current available hardware platforms

include the Xilinx Zynq-7000 ZC702 Evaluation Kit, the Xilinx Zyqn-7000 EPP Video Kit, and

the Zynq-7000 EPP ZedBoard. [27]

2.3.2 Xilinx Zynq-7000 Evaluation Kit

The Xilinx Zynq-7000 ZC702 Evaluation Kit is a kit from Xilinx that includes a silicon board

with the Zynq EPP, development tools, IP, and a variety of reference designs. An image of the

board is shown in Figure 7. It provides abundant I/O expandability for embedded designers to

develop upon. It is also backed with OS support and by the ARM community. The kit is provided

with the XC7Z020-1CLG484CES device Zynq chip, design suites, various cables for scoping the

16

board, 8 GB SD card that contains the provided Linux startup kernel, and documentation with

step-by-step guides. It also contains all schematics and PCB files and design examples. [28]

Figure 7: Zynq 7000 Evaluation Kit [28]

2.3.3 ZedBoard

The ZedBoard is a community driven approach of the Zynq EPP by Silica and Digilent. An image

of the board is shown in Figure 8. The concept behind the board is to be designed in an open

source community manner. The board contains various peripherals with extension options that

include a FPGA Mezzanine Card and peripheral modules using the Peripheral Module (Pmod)

connector to connect components such as an ADC, DAC, Sensors, Switches, Displays, RF, WiFi,

Bluetooth, or Storage. The ZebBoard website, ZedBoard.org, is where all the collaboration

material is maintained. [29]

17

Figure 8: ZedBoard [30]

2.4 Real-Time Operating Systems

An OS is an abstraction of hardware in a system that provides an interface for servicing

applications. The OS replaces the direct interface to hardware with program functionalities a user

of the system wants or needs. It supports the basic functions of a computer system and makes the

system easier to maintain, faster, and easier to write applications. When designing an OS various

parameters are considered including performance, resources management, security, marketability,

and failure tolerance. It is responsible for managing hardware and software resources. Hardware

resources include processors, memory, and I/O devices. Software resources include programs and

data files.

An OS is comprised of layers that create an environment that hides and simplifies the underlying

hardware by providing sets of commands to meet the user's needs. Though the structure of the OS

kernel can vary, they all attempt to provide the user with a platform in which to utilize the system

hardware. Many OSs make multiple programs and processes appear to run at the same time

through multitasking. However, a processor can only handle one thread of execution at a time. A

18

scheduler is used to manage the processes executing on the processor and to create the illusion of

simultaneous execution through a process call time slicing and rapidly switching between

program threads. [31]

The type of OS can be defined by its scheduler and how it decides which process threads to run

and for how long. A multi user OS, like Unix, will ensure processing time is shared equally

between users. A desktop type OS, like Windows, has a scheduler that ensures that the system

remains responsive to users when needed. A RTOS's scheduler is designed to provide predictable

execution patterns to systems that have real time requirements. Embedded systems often have

these demands and means the system must respond to a given event within a strictly defined

deadline. This means that the OS's scheduler must be deterministic in order to predict the real

time requirements of the system. [32]

FreeRTOS uses a traditional real time scheduler by allowing the user to assign a priority to each

thread to determine execution. This scheduler, based on the priority, knows which thread of

execution to run next. FreeRTOS is a versatile class of RTOS designed for many applications

including being implemented on small microcontrollers. FreeRTOS is designed for systems that

do not require a full RTOS implementation, many times in the design of embedded applications,

or do not have the ability to run a full RTOS. FreeRTOS only provides the core real time

scheduling functionality, inter-task communication, and timing and synchronization primitives

and would more accurately be referred to as a real time kernel. If additional functionality is

required, they can be included as add-on components. [33]

2.5 FreeRTOS

FreeRTOS is a RTOS from Real Time Engineers Ltd written in C and, as of October 2011,

supports 31 processor architectures. FreeRTOS is a lightweight real-time kernel designed for

small embedded systems that require deterministic and real-time responsiveness to system events.

19

Lightweight means it is a less complex OS with a basic instruction set designed to be faster and

not as heavily resource dependent. Key features of FreeRTOS include an Application

Programming Interface (API), message passing, binary and counting semaphores, mutual

exclusion with priority inheritance, pre-emptive scheduling, co-operative scheduling, and round

robin with time slicing. Round robin is a simple scheduling algorithm for process time slicing in

which each process is assigned equal portions of execution time and in circular order. [33]

With the growing complexity in embedded design due to the availability of more memory and

various communication peripherals, there is an inherent increase in software complexity. The

inherent benefit of using an OS kernel is clear. FreeRTOS is free and is released to its users as

open source. FreeRTOS implements its open source by releasing moderated versions instead of

pure open source. This ensures that only software originated by FreeRTOS is used in the official

release. There are, however, community contributed files that are separate and available as open

source. FreeRTOS's license model is designed around the idea that code on the application side

that uses FreeRTOS remains closed, while code that modifies or extends the kernel itself is open

source. [34]

FreeRTOS supports several Xilinx products including Microblaze, PowerPC, and the Zynq.

Microblaze, which is a 32-bit soft processor core port, runs on various Xilinx FPGA's including

the Spartan-6 and Virtex5. PowerPC 405/440 are configurable processor cores that run on Virtex4

and Virtex5 FPGA's repetitively. The initial release of the FreeRTOS is available for the Zynq in

October 2011. The original port was for the Xilinx Zynq EPP and was developed to run on the

Zynq 7000 EPP based ZC702 board and implemented on version 14.1 of the Xilinx ISE Design

Suite. As Xilinx releases newer versions of their design suites, the ports are updated and released

accordingly. [35]

20

2.6 Rhealstone: Real-Time Benchmark

The Rhealstone Benchmark was proposed by Rabindra P. Kar and Kent Porter in 1989 and was

designed to be a metric for comparing the performance of real-time multitasking systems

independent of any features found in any CPU, bus architecture, or a specific OS or kernel. [36]

At that time, there was the Whetstones and Dhrystones that benchmarked code generated by

compilers and the throughput of hardware platforms, but no equivalent measurement for real-time

systems. Rhealstone was a proposed standard for objectively measuring real-time performance

and summarizing the components of performance.

The Rhealstone metric mainly helps embedded developers select real-time systems appropriate

for a specific application. It should be noted that an encompassing real-time solution would

consist of the system, the application software, and external devices, so Rhealstones doesn't

measure the quality of the complete solution, but instead a measurement targeted specifically

toward a multitasking solution. The scope of Rhealstones is with complex systems running five to

thirty concurrent processes. It will be adopted to be used with a multitasking AMP system.

The Rhealstone takes into account that all real-time applications are unique. One system may be

highly interrupt-driven while another relies heavily on message-passing among tasks or another

that fights for resources. The Rhealstone figure is a sum obtained from six categories of activity

most crucial to the performance of real-time systems. The categories include task switching,

preemption, interrupt latency time, semaphore shuffling, deadlock breaking, and intertask

message latency time. It uses coefficients that the system designer assigns weight to each

Rhealstone component based on relative importance.

21

2.6.1 Task Switching Time

Task switching time is the average time the system takes to switch between two independent and

active, not suspended or sleeping, tasks of equal priority. Task switching is synchronous and

nonpreemptive and is an important measure of any multitasking system. This metric is influenced

by the host CPU's architecture, instruction set, and features and is designed to assess the

compactness of task control data structures and the efficiency with which the executive

manipulates the data structures in saving and restoring contexts. Task switching time,

additionally, measures the executive's list management capabilities. [36] A demonstration of this

performance parameter is shown in Figure 9.

Figure 9: Rhealstone Benchmarking: Task-Switching Time [37]

2.6.2 Preemption Time

Preemption time is the average time it takes a higher-priority task to take control of the system

from a running task of lower priority and usually occurs when the higher-priority task moves

from an idle to a ready state in response to some external event. In other words, it is the average

time the executive takes to recognize an external event and switch control of the system from a

running task of lower priority to an idle task of higher priority. A demonstration of preemption

time is shown in Figure 10. Preemption and interrupt latency, which is discussed next, can be

22

considered most significant real-time performance parameter since multitasking systems assign

task priorities and even dynamically through applications. [36]

Figure 10: Rhealstone Benchmarking: Preemption Time [37]

2.6.3 Interrupt Latency

Interrupt latency, shown in Figure 11, is the time between the CPU's receipt of an interrupt

request and the execution of the first instruction in the interrupt service routine. Its reflected by

the delay introduced by an executive and the processor and not delays occurring on the bus or

interfaces to external devices. [36]

Figure 11: Rhealstone Benchmarking: Interrupt Latency [37]

23

2.6.4 Semaphore Shuffling Time

Semaphore shuffling time is the delay between a task's release of a semaphore and the activation

of another task blocked on the "wait semaphore" primitive. When implementing this, at least

three tasks with different priorities should be active and no other tasks should be scheduled in

between. The semaphore shuffling time measures the overhead associated with mutual exclusion.

This occurs when multiple tasks compete for the same resources. Semaphore based mutual

exclusion provides a way of ensuring that a nonshareable resource only serves one master at a

time. [36] Semaphore shuffling time is shown in Figure 12.

Figure 12: Rhealstone Benchmarking: Semaphore-Shuffle Time [37]

2.6.5 Deadlock Breaking Time

Deadlock breaking occurs when a higher-priority task preempts a lower-priority task that holds a

resource needed by the higher-priority task and the metric measures the average time it takes the

executive to resolve this conflict. Deadlocks are a common multitasking problem and are

sometime not handled effectively. This can be solved by temporarily raising the priority of the

running task above that of the interrupting task until the needed resource is released by the lower-

priority task. The temporary priority is then lowered so the new task can run. Deadlock breaking,

24

shown in Figure 13, is the sum of times required to resolve an ownership dispute between a low-

priority task holding a resource and a higher-priority task that needs it. [36]

Figure 13: Rhealstone Benchmarking: Deadlock-Break Time [37]

2.6.6 Intertask Messaging Latency

Intertask message latency, demonstrated in Figure 14, is the delay within the executive when a

nonzero-length data message is sent from one task to another. In order to measure it properly, the

sending task should stop executing immediately after sending the message and the receiving task

should be suspended while waiting for it.

Figure 14: Rhealstone Benchmarking: Intertask Message Latency [37]

25

The intertask message-passing link must be established at run time and if multiple messages are

sent on the same link, the receiving task gets a chance to read an old message before the sending

task can overwrite it with a new one. This can be handled with various mechanisms such as pipes,

queues, and stream files which are usually provided by multitasking executives for intertask data

communication. [36]

2.6.7 Calculating the Rhealstone Performance Number

The measurement of the six performance categories provide embedded designers with a well

rounded analysis of the system performance. Rhealstone also makes it easy to compare systems

by generating a single real-time value. All of the benchmarks must be first represented in seconds

(t1-t6). Then, added together and the average of them found. The number is then inverted to get

the Rhealstone performance number that is represented with the units Rhealstones/second as

shown in Equation 2.1. [37]

��������	� �������	�� ������ � ���1��2��3��4��5��6�
6 �

�1
��������	��/!�� (2.1)

The above performance number is a method to compare systems on a general level by

considering all the parameters to be equally occurring. If an embedded designer needs to evaluate

a system based on a specific category, for example, an application that is heavily interrupt-driven

a weight can be chosen before calculating the performance number. This method is referred to as

“application specific Rhealstone” and is shown as Equation 2.2. [37]

"##�$���$�	 !#��$$� ��������	�
�������	�� ������ � %�	1�1�	2�2�	3�3�	4�4�	5�5�	6�6�

	1�	2�	3�	4�	5�	6
&

�1
��������	��/!��

 (2.2)

Nonnegative real coefficients (n1-n6) for each category are set based on occurrence within the

application. If interrupts occur 5 times more than task switching, its coefficient should be 5 times

larger. Similarly, if a category does not happen at all, the coefficient is set to zero. For example, if

26

there is no inter-task message passing performed by the application, its coefficient should be set

to zero. The application specific Rhealstone Performance Number is then again calculated by

inverting the average. [37]

27

CHAPTER 3

DESIGN TOOLS

3.1 Introduction

Complex embedded systems require powerful and well developed design tools. With an

embedded system such as the Zynq EPP, embedded engineers are faced with complex design

projects that have both hardware and software design problems. Using an FPGA in the design

makes the system even more complicated and combining each individually designed subsystem

into one complete system is again a difficult task. With the Zynq EPP and the addition of the

ARM dual core as Hard IP, Xilinx has developed a set of design tools that manage this

complexity and help make the design process as simple as possible. The broad array of

development system tools provided by Xilinx is collectively called the ISE Design Suite. The

Xilinx ISE Design Suite 14 is the current version used for designing on the Zynq-7000 All

Programmable SoC platform. [39]

3.2 Xilinx ISE 14

The Xilinx ISE Design Suite is the current development tool set used to design every aspect of

the Zynq-7000 All Programmable SoC. There are currently three editions, the Logic, Embedded,

and DSP, of the ISE Design Suite and are all included as part of the System edition. [40] The

Xilinx ISE Design Suite 14.2 Embedded Edition was used for development on the Xilinx ZC702

Rev C Evaluation Board for this thesis. Xilinx Vivado is the next generation of this design suite

and will be replacing the Xilinx ISE for future Xilinx products. The first generation of Vivado did

not support the Zynq EPP, but will support it in the future.

The Embedded Edition of the ISE Design Suite includes the PlanAhead design analysis tool,

ChipScope Pro, and the Embedded Development Kit (EDK). The EDK consists of the Xilinx

28

Platform Studio (XPS) and the Software Development Kit (SDK). [39] Aside from the ISE, Tera

Term was also used for the design process. Figure 15 depicts the block diagram for the software

packages within the ISE Design Suite and how they interact with each other. PlanAhead is the

initial development tool for starting an embedded design. Planahead works with the EDK to

design the hardware and software system.

Figure 15: Design Tools Block Diagram – Xilinx ISE 14

3.3 PlanAhead

The PlanAhead design and analysis tool is used to add various hardware sources and manage the

link between the hardware and software design aspects of the project. It helps with FPGA I/O

assignments and advanced FPGA layout planning to optimize the connectivity between the PCB

and FGPA. [40] PlanAhead allows the embedded designer to create a project with an embedded

processor system as the top level and works with the EDK to design the embedded system. The

hardware system is created using XPS and imported back into the PlanAhead project. The

29

PlanAhead project is then exported to the SDK to develop software for the hardware design that

was just created.

When PlanAhead executes, it allows the embedded designer to create a new project or open an

existing one. A Register Transfer Level (RTL) project is created to begin the design in

PlanAhead. The RTL Project allows the embedded designer to add sources, generate IP, and run

an RTL analysis. The designer starts by setting up the type of hardware board the project is being

design for. For this thesis, the Zynq ZC702 Evaluation Board was selected. PlanAhead is then

used to import various sources into the project. It can add constraints such as a User Constraint

Files (UCF) which specifies how the logical design constraints are implemented on the target

device [54], add design sources such as the HDL Verilog, or an Embedded Source for setting up

the PS peripherals and various other settings. PlanAhead also generates the bitstream’s bit file for

programming the PL in the SDK. [51] Figure 16 shows how the project files of PlanAhead

interact with the rest of the ISE Design tools.

Figure 16: Design Tools Block Diagram – PlanAhead

30

When an embedded source is added to the project, it recognizes that an embedded processor

system was created and starts XPS to setup the added source. When the designer is finished with

XPS, the design is updated in the PlanAhead tool. From here the embedded processor system can

be created as the top level of the system by creating a Top HDL with Verilog. The entire project

is then exported to the SDK. [39]

3.4 Embedded Design Kit

The EDK is used to design a complete embedded processor system for implementation on a

Xilinx hardware device. It assists designers in hardware and software application design,

debugging, and execution. The design can be run on the destination boards for verification of a

working design. The EDK includes hardware IP, drivers and libraries, and GNU compiler and

debugger for C/C++ software development for the ARM Cortex-A9MP processors in the Zynq

PS. It also provides documentation and sample tutorial projects for understanding the basics. [39]

The tool kits included in the EDK are the XPS and SDK. Within these two kits are various tools

including the Base System Builder (BSB) Wizard, Xilinx Microprocessor Debugger (XMD) and

GNU Software Debugging Tools, Simulation Model Generation Tool (SimGen), Create and

Import Peripheral Wizard, GNU Software Development Tools, Library Generation Tool

(LibGen), Bitstream Initializer (BitInit), and the Hardware Platform Generation Tool (PlatGen).

[40]

3.5 Xilinx Platform Studio

XPS provides a development environment for designing the embedded PS’s hardware. XPS is

primarily used for setting up the processor, peripheral, and interconnection configurations for the

embedded processor hardware system. It’s designed to make it easy to add desired IPs and create

port connections for components like the clock and reset. The XPS project can be designed from

the ground up using a blank project or the BSB wizard can be used to add default peripherals to

31

the fabric and to automatically select a default configuration for the PS I/O interface. After the

BSB is used, the Zynq EPP PS block diagram is displayed in XPS. This allows the designer to

click on any of the configurable green blocks and make configuration changes. The configuration

process of XPS is shown in Figure 17.

Figure 17: Design Tools Block Diagram – XPS

XPS creates hardware platform information in the Xilinx Microprocessor Project (XMP) file

format. [51] This file includes information about the PS configurations including GPIO such as

MIO and Extended MIO (EMIO), and adds IP and information about configuring the PL in

PlanAhead. Closing XPS will update the currently open PlanAhead session.

3.5.1 Base System Builder Wizard

The BSB wizard is part of the XPS and prompts the designer to choose whether they want

assistants in setting up the basic configurations of PS. The BSB helps create a working embedded

design for the evaluation board quickly by setting up basic features and common functionality

32

automatically. After setting up the basics of the system, XPS and other ISE software tools can be

used to perform system customization. The first aspect of the design the BSB wizard sets up is

what type of interface is going to be used whether it be AXI or Processor Local Bus (PLB) which

is an old interface standard used by Xilinx. The BSB then needs to know what type of board the

system is being design for. Fortunately, this information was imported from PlanAhead and if it

wasn’t the correct board setup can be selected. [39] The BSB closes and now allows the designer

to customize the existing design.

3.5.2 AXI Interconnection

The AXI bus interface IP cores started being used by Xilinx with their Spartan-6 and Virtex-6

hardware devices. An AXI system interface comes with standard Xilinx IP and tool flows and

will be the standard interface used for all current and future versions of Xilinx products. The PLB

system is a legacy bus standard used by Xilinx FPGA families up to the Spartan 6 and Virtex 6

and is not supporting newer FPGA families. This means it is not suggested to start new projects

with PLB if they will be used on new Xilinx platforms. [43] The AXI specification is in charge of

providing a framework for defining protocols for moving data between IP. It does this using a

defined signaling standard. The AXI standard is responsible for making sure that IP can exchange

data is moved across a system properly. [42] The AXI and other IP can be added to the PS design

to create a custom embedded system.

3.5.3 Hardware Platform Configuration

The Zynq’s PS can be configured in various ways. When the BSB is finished setting up the basic

system, the designer is provided with the Zynq EPP processing platform configuration tab shown

in Figure 18. This tab allows the designer to configure I/O peripherals, clocks, memory, and other

aspects of the PS. The green blocks are customizable portions of the PS.

33

Figure 18: Processing Platform Peripheral Configuration – XPS

Various IP can be added to the PS using the bus interface tab. Once the peripherals are added to

the system, the ports tab is used to setup the I/O peripherals and clocks. There are 54 MIO that

can be used by the PS. If more I/O is required or the designer wants to utilize the PL, the I/O can

be setup as EMIO for use by FPGA fabric. [53] Once the PS is configured, XPS is exited and the

design is updated in PlanAhead and ready to be exported to the SDK.

3.6 Software Development Kit

The SDK is used for developing the software design for the embedded project. The SDK is used

for C/C++ embedded software application creation and verification of software application

projects and was built on the Eclipse open-source standard framework. [40] The SDK provides

tools for software project management and gives access to the GNU toolchain for code

compilation and debugging. It can be used to run applications on the target hardware board and

34

create bootable images. The FPGA fabric can also be programmed when needed. Figure 19 shows

the relationship between the files within the SDK.

Figure 19 Design Tools Block Diagram – SDK

The PlanAhead design tool exports the hardware platform specification files from XPS to the

SDK. These files include the XML, Microprocessor Hardware Specification (MHS), and the

ps7_init.c, ps7_init.h, ps7_init.tcl, and ps7_init.html files. The XML file is the main file used for

setting up the First Stage Boot Loader (FSBL) and Board Support Package (BSP). The MHS file

contains information about the interconnects between the PS and PL. Ps7_init.c, ps7_init.h,

ps7_init.tcl, and ps7_init.html files are internal configuration files containing information on the

Zynq EPP peripheral configurations. The ps7_init.c and ps7_init.h files contain settings for DDR,

clocks, plls, and MIOs to initialize the Zynq EPP PS. The SDK uses these specified settings so

that applications can be run on top of the PS. It should be noted that here are some settings of the

PS that are fixed for the ZC702 evaluation board and cannot be changed. [44]

35

3.6.1 Board Support Package

A BSP is created using the SDK from the files imported from PlanAhead. The BSP is the support

code for a board or hardware platform which helps with initialization during power up as well as

provides support for software applications to run on top of. The BSP is usually specific to the OS

and one is needed for each of the cores of the processor. [39] It is a collection of libraries and

support drivers that form the application’s lowest layer of the software stack. A BSP must be

created before a designer can create or use a software application by linking against it or running

on top of the software platform. It does this by using the API that the BSP provides. [47] Multiple

BSPs can be used in the same SDK workspace.

3.6.2 Xilinx C Project

The SDK allows for application development of C/C++ programs. For this thesis, the C

programming language was used. The C program can be compiled with the SDK and an

Executable and Linakable Format (ELF) file is generated. This file is used to execute on the

processor. The SDK provides a basic Hello world example to understand the basic of

programming the PS. The ELF file is also used in creating a bootable image for running on the

hardware device. All application development for this thesis was done in C.

3.6.3 First Stage Boot Loader

The FSBL starts after the device boots and is loaded into the OCM. It is responsible for

initializing the PS configuration exported from XPS. The FSBL always runs on CPU0 and is the

first software application that is executed. It is used to initialize peripherals, programming the PL,

load a second stage bootloader, or load the application ELF file. The version of FSBL included in

the ISE Design Suite does not support multiple data or ELF file. This is because the FSBL

searches for a bit file. If a bit file is found, the FSBL writes it to the PL. The FSBL then loads one

application ELF file into memory and executes it. If AMP is desired, the FSBL must be modified

so it continues to search for files. [52] The FSBL’s ELF file can be stitched with the bitstream to

36

create a Boot Image File (BIF) using the Bootgen application. The create boot image wizard in

SDK creates a bootable image that can be flashed to the board. [51]

3.6.4 Program FPGA

When the FPGA fabric and peripherals are utilized on the Zynq evaluation board, a Bitstream

BIT file is generated in PlanAhead using the bitstream generator. The bitstream is used to

configure the custom design logic in the PL by downloading the system.bit file to the FPGA

within the SDK. When only the PS is required, the Bitstream is not needed and can be omitted.

[44] The FPGA must be programmed anytime EMIO is used. An example would be when using

the Pmod2 connector on the Zynq Evaluation Board.

3.6.5 XMD Console

The XMD console is useful for running and debugging an embedded design application. It can be

used for debugging and verifying the system for the Dual ARM Cortex-A9 MPCore processor

running on the hardware board and is accessed from the XPS or SDK. The hardware board is

debugged using a cycle-accurate Instruction Set Simulator (ISS). XMD provides a Tool

Command Language (TCL) interface that is used for command line control and debugging of the

target board. Additionally, it can be used to test a complete system by running verification test

scripts.

Debugging control of the target board in XMD can be done from the supported GNU Debugger

(GDB) remote TCP or JTAG. XMD is used to download the FSBL to the evaluation board and

the application’s ELF file. The “connect arm hw” command allows the SDK to connect to the

ARM processor on the hardware board. The ELF file can be downloaded to the processor using

the “dow” command. It can be ran and stop using the commands “con” and “stop” respectively.

When downloading a different ELF file, use “rst –processor” to reset the processor. [44]

37

3.7 ChipScope Pro

ChipScope Pro is useful for on-chip debugging of FPGA designs and assists with in-circuit

verification. ChipScope Pro’s tools and IP cores provide embedded designers with a practical

ways to test FPGA devices. These tools integrate measurement hardware components with Xilinx

target boards for testing. The components communicate with the tools and provide the embedded

designer with logic analyzing capabilities. The ChipScope Pro Serial I/O Toolkit, for example,

explores and debugs high-speed serial transceiver I/O designs on FPGAs. The Internal Bit Error

Ratio Tester core and associated software provides and perform bit error ratio analysis on high-

speed serial transceivers channels implemented on the FPGA. [50]

3.8 Tera Term

A serial communication utility is needed to transmit and receive information of the ZC702

Evaluation Board. The SDK has a built in serial terminal utility available to the embedded design.

This utility functions well, but there are also various other terminal utilities that designers tend to

prefer. Tera Term is a free open-source terminal emulator and was used for the embedded designs

for this thesis. [41] The terminal is connected from the Host PC to the UART port of ZC702

Evaluation Board using a USB Type-A to USB Mini-B cable. The standard configuration used

for Zynq PS was a Baud rate of 115200, 8 bits, no parity, a stop equal to1 bit and no flow control.

[39]

38

CHAPTER 4

ZYNQ EPP OPERATING SYSTEMS

4.1 Introduction

Selecting the optimal OS for embedded applications is key in designing the system. It important

to understand the system’s design requirements when choosing the OS as it will affect how

applications can be developed and ran. There are a variety of OS able run on the Zc702

Evaluation Board. There are three platforms this thesis is concerned which include Bare-Metal,

Xilinx’s Linux kernel, and FreeRTOS. The Standalone “Bare-metal” software system provides

low level control that is included with the Xilinx ISE Design Suite.

Though Bare-Metal provides low level control, it is not technically an OS, but for all intended

purposes it still can run on one or both of the ARM cores and process much like any other OS. A

bootable image of Xilinx’s Linux kernel comes prepackaged with the evaluation kit and is

discussed briefly. Finally, FreeRTOS is a well known free RTOS that provides constantly

updated ports that run on the Zynq EPP. Since the Zynq-7000 SoC has a dual ARM processor, a

decision must be made when utilizing both cores on whether to use SMP or AMP and which

OS(s) will be used for each of the cores. AMP with Bare-Metal on one core and Linux [46] or

FreeRTOS on the other or FreeRTOS on both cores are a few examples. [51] This thesis focuses

specifically on multitasking FreeRTOS on a single core, but will discuss the other available OS

for context.

4.2 Bare-Metal

Bare-Metal is a simple, low-level software layer included in the Xilinx SDK. It provides

processor features including caches, interrupts, and exceptions in a single threaded manner. The

OS provides basic I/O, profiling, abort, and exit features. A basic C program application can be

39

run on top of the Bare-Metal OS. [39] Bare-metal is used on a software system that typically does

not require many features that are normally provided by an actual OS. There are trade-offs

between having a simple software system over an OS. An OS requires some processor throughput

and tends to be less deterministic than that of a simple software system, but the simple system

might not be able to handle the overhead or lack determinism. In today’s embedded processing

design, processing speeds allow an OS to run with negligible overhead though some system

designers avoid an OS due to their complexity. [51]

4.3 Linux

As an addition to the Bare-metal OS, Xilinx provides software design tools for the development

of Linux applications. The Zynq EPP evaluation board comes with a pre-installed Linux kernel

that is monitored by Xilinx and is specifically designed to run on the Zynq EPP. Additionally,

there are various vendors that provide Linux distributions. Linux is a popular OS among the Zynq

community. Many embedded designers use Linux because it is regarded as a protected full-

featured OS that takes advantage of the MMU in the processor and provides SMP capabilities to

utilize multiple processors. Xilinx provides drivers for the peripherals in the PS and additional

drivers can be added for custom logic in the PL.

Linux can boot in multiple ways including from a boot image into flash during power up or

resetting the board, downloading and running the FSBL which is followed by U-Boot and then

the Linux Kernel, or using U-Boot to load and run images. U-Boot is an open source bootloader

used by Xilinx and the Linux community. Linux isn’t a RTOS, but does have some real-time

characteristics. [51] Designers that require a RTOS will find FreeRTOS to be an applicable

solution.

40

4.3 FreeRTOS

The FreeRTOS port for the Zynq EPP is available from the FreeRTOS website. It is based on

version 7.0.2 of FreeRTOS and should be noted that it is not supported by Xilinx Technical

Support. It was tested to run with the default Zynq ZC702 system, a CPU frequency of 667 MHz,

and in JTAG boot mode. It utilizes SCUTIMER, which runs at half the CPU frequency, for

generating tick interrupts. The UART is used for displaying messages on a console terminal such

as Tera Term. The FreeRTOS port extends the Bare-Metal’s Standalone BSP to recognize and

include FreeRTOS source files. Some demo applications are included with the port including

applications for printing Hello World to the terminal as well as blinking LEDs using semaphores

and mutexs. This port utilizes all the standard FreeRTOS functions available and was used as the

basis for all of the work in this thesis. [56]

41

CHAPTER 5

UTILIZING THE ZYNQ EPP HARDWARE

5.1 Introduction

It is important to understand how to develop an embedded system with the Zynq EPP and the

various options it makes available to the designer. The evaluation board has several boot options

and can boot from a bootable image on an SD card, boot in Quad SPI mode, or with JTAG using

a Xilinx Platform Cable. Additional IP in not required to utilize the Zynq PS, but if peripherals

that used the PL are, it can be attached by adding IPs in the fabric. This PS + PL combination

allows an embedded designer to achieve complex, but efficient designs of a single SoC.

Additional hardware components can be attached to the hardware board including a Pmod

connection. [51]

5.2 Booting

The Zynq EPP can be configured to boot in secure mode using static memories only, which is

JTAG disabled, or in non-secure mode using static memories or JTAG. JTAG mode is primarily

used for development and debugging. Other booting options include NAND, parallel NOR, Serial

NOR, also known as Quad-SPI, or SD flash memory. There are three boot stages the Zynq can go

through. Stage-0 boot know as BootROM, followed by the FSBL, and then optionally a Second

Stage Bootloader. [51] The JTAG boot mode was used for the entirety of this thesis. In order to

use JTAG for programming and debugging, the board either needs a Xilinx Platform Cable or a

Digilent Cable. This thesis used the Xilinx Platform Cable II. If the designer decides to boot from

SD, an 8 GB SD card is included to store bootable images for the evaluation to boot in SD mode.

42

5.3 Pmod Connection

All of the projects of this thesis targeted the Zynq ZC702 Rev C evaluation board. The evaluation

board requires several additional hardware components to function. The board gets its power

from an AC power adapter that provides 12 VDC. The board communicates with the host pc

using a USB Type-A to USB Mini-B cable. Pmod connectors were used to attach an external

Pmod module. When performing benchmarking, all signals were sent through the Pmod2 port of

the Zynq EPP evaluation board and measured. In order to do this, a Digilent 6-pin Test Point

header Pmod module was used that provides connections for probing. [49]

The signals sent to the Pmod2 port were measured using a DigiView Tech Tool Logic Analyzer

model DV1-100. It is a 100 MHz, 18 Channel, analyzer that connects to the host terminal through

a USB 1.0 to USB 2.0 cable. [55] Signals are monitored using the provided software tool from

DigiView. [48] All benchmarking data was recorded using this tool.

43

CHAPTER 6

RESULTS

6.1 Introduction

Implementing FreeRTOS on the Zynq EPP required an in-depth understanding of the design tools

and hardware. The work in this thesis discusses the timeline of development on the Zynq

evaluation board. Understanding the basic development tools and hardware began by following

the basic tutorials provided with the evaluation kit. [39] It reviews the software design tool basics

and implements the infamous “Hello World” program that prints the message to a terminal. There

is a strong Zynq EPP community being develop, more specifically for the Zedboard, which is an

available resource for beginning designers. Designer blogs, including the Zynq Geek blog, have

been supported by Zedboard.org and have their own spot on the community website. [45]

6.2 Bare-Metal - Single Core

Bare-Metal is included with the Xilinx ISE Design Suite and is supported by several tutorials

from Xilinx. It provides a basis for understanding basic C program development on the Zynq

EPP. It works with the default hardware setup and is strongly supported by Xilinx. Implementing

“Hello World” is the start for embedded designers. From here, designers can begin to talk to

various built in peripherals including switches and LEDs. The first step is to design with only the

PS and using AXI GPIO MIO. This does not require the designer to program the FPGA fabric.

This allows the designer to control LEDs and communicate with the UART, and various other

AXI interconnects.

Once an understanding is of the PS has been developed, the EMIO can be used. This AXI

interconnect utilize the PL and requires the FPGA to be programmed at the most basic level. The

PL at the most basic level acts like a wire and passes signals. This allows for the use of GPIO

44

such as the PMO2 connector on the evaluation board. The PL can also eventually be used in more

advanced ways than simply passing signals, but will not be addressed in this thesis. A basic

example of this is controlling the LEDs using a PWM signal which is sent to the PL as a duty

cycle from the PS. [53]

6.3 FreeRTOS - Multitasking Single Core

A strong basic understanding of the Zynq EPP is needed to implement more advanced designs.

The concepts utilized with Bare-Metal carry over for work with FreeRTOS. The port provided for

FreeRTOS to run on the Zynq EPP provides basic instructions to implement the OS on a single

core of the hardware. [56] It contains basic example applications including printing “Hello

World” with tasks and blinking LEDs with semaphores and mutexes. With these basic examples

and FreeRTOS manuals, [57] more advanced applications can be developed. Similarly, as with

Bare-Metal, C programs can be developed to utilize the AXI GPIO MIO interconnects. Again,

this just requires just the PS and no PL needs to be programmed.

The PL and the EMIO can be utilized by programming the FPGA fabric. Again, it can used as a

basic wire or can eventually be programmed for more advanced system development. There is

currently a known problem with FreeRTOS where if the PL is programmed, there are problems

with libraries in the SDK and the designer must manually modify them. [56] The Pmod2 was

used to perform the benchmarking and required programming the PL due to it being an EMIO

interconnect on the evaluation board.

6.4 Benchmarking

The benchmarking for FreeRTOS followed the source code from the Rhealstone Benchmarking

done for the iRMX RTOS with minor modifications to work with the new OS. [37] Each

benchmark starts by outputting a HIGH single to the Pmod2 port and is measured with the

DigiView Logic Analyzer. When the benchmark is finished, it sets the Pmod2 signal low. The

45

time the signal remained HIGH was used as the total execution time of each benchmark. The

DigiView Logic Analyzer has a resolution of 10 nsec so the benchmarks utilize sample

interpolation to produce a finer measurement. [55] As stated previously, the CPU operates at 633

MHz for FreeRTOS, which results in a period of 1.6 nsec. Each of the benchmarks perform are

discussed in detail and the source code is provided in the Appendices.

6.4.1 FreeRTOS Task-Switching Time

The Task-Switching benchmarking sets up two tasks with equal priority. The tasks switch back

and forth between the processor and repeats for 50000 iterations. To first determine the time it

takes to perform the for loop “work”, the benchmark just measures the loops performing no work

and not task switching. This is shown in Code Listing 1.

Code Listing 1: Benchmark without Task-Switching Time

The MAX_LOOPS_SERIAL is the total number of iterations for the benchmark. This code does

not actually create tasks and simply determines the execution time of the portions of the code that

are not part of the Task-Switching measurement. The execution of this code segment is recorded

with the Digiview software and the second portion of the code runs. The second portion utilizes

two tasks. This time the two tasks perform task switching for the desired number of iterations.

This is shown in Code Listing 2.

The prvFirst and prvSecond are the two tasks respectively and each perform their own “work”

loops for the number of iteration specified by MAX_LOOPS_TASK_SWITCHING which for

this benchmark was 500,000. The Task-Switching is performed by the taskYIELD(); command.

 for (count1 = 0; count1 < MAX_LOOPS_SERIAL; count1++)
 {
 // Do Nothing
 }
 for (count2 = 0; count2 < MAX_LOOPS_SERIAL; count2++)
 {
 // Do Nothing
 }

46

When the tasks are finished, the vTaskDelete(); is used to delete the task and the xHandle

variable points to the desired task. In this case each task deletes itself.

Code Listing 2: Task-Switching Time

The Task-Switching value is important for the other benchmarks. Since most of the other

benchmarks require Task-Switching as part of the other benchmarks, the value calculated in this

section can be used to negate the extra time measured for the other benchmarks inflated by Task-

Switching.

6.4.2 FreeRTOS Preemption Time

The Preemption benchmarks works by creating two tasks. Task 2 has a higher priority and delays

for one tick interrupt. While it’s sleeping, Task 1 runs. Task 1 gets preempted when Task 2 wakes

and Task 2 runs again, but immediate delays. This repeats for 15000 iterations. The benchmark

first accounts for the processing time required by the for loops that do “work” as shown in Code

Listing 3.

static void prvFirst(void *pvParameters) //Task 1
{
 for(;;)
 {
 for (count1 = 0; count1 < MAX_LOOPS_TASK_SWITCHING; count1++)
 {
 taskYIELD();
 }
 vTaskDelete(xHandleFirst); // Delete Task 1
 }
}

static void prvSecond(void *pvParameters) //Task 2
{
 for(;;)
 {
 for (count2 = 0; count2 < MAX_LOOPS_TASK_SWITCHING; count2++)
 {
 taskYIELD();
 }
 vTaskDelete(xHandleSecond); // Delete Task 2
 }
}

47

Code Listing 3: Benchmark Time without Preemption

MAX_LOOPS is equal to the benchmark iteration number. ONE_TICK_AVERAGE is the

average amount of for loops that can be performed during one tick. Once the time for the for

loops are determined, the two tasks are created and the benchmark measures the preemption time.

Task 2 runs and immediately sleeps and Task 1 does “work” until it gets preempted by Task 2.

This is demonstrated in Code Listing 4.

Code Listing 4: Preemption Time

static void prvFirst(void *pvParameters) //Task 1
{
 for(;;)
 {
 for (count1 = 0; count1 < MAX_LOOPS; count1++)
 {
 for (i = 0; i < ONE_TICK; i++)
 {
 // Do Nothing
 }
 }
 vTaskDelete(xHandleFirst); // Delete Task 1
 }
}

static void prvSecond(void *pvParameters) //Task 2
{
 for(;;)
 {
 for (count2 = 0; count2 < MAX_LOOPS; count2++)
 {
 i = ONE_TICK; // Reset i because i never reaches ONE_TICK
 vTaskDelay(1); // Delay a single tick
 }
 vTaskDelete(xHandleSecond); // Delete Task 2
 }
}

for (count1 = 0; count1 < MAX_LOOPS; count1++)
 {
 for (i = 0; i < ONE_TICK_AVERAGE; i++)
 {
 // Do Nothing
 }
 }
 for (count2 = 0; count2 < MAX_LOOPS; count2++)
 {
 // Do Nothing
 }

48

ONE_TICK is a slightly higher number than the number of for loops that can be performed

during one tick. The vTaskDelay(); accepts the number of ticks the specific task should delay.

While Task 2 delays, Task 1 can run but only until Task to wakes up from its delay. The two

measurement times are subtracted from each other to determine the Preemption and Task

switching time. The time determined for Task-Switching, which was determined from the first

benchmark, is subtracted from the Preemption benchmark time to calculate the Preemption time

itself.

6.4.3 FreeRTOS Semaphore Shuffle Time

This Semaphore Shuffle Time benchmark creates 2 tasks and a binary semaphore. Each task only

has 2 capabilities. They can either take or give the semaphore and yield after either action. Task 1

will start by taking the semaphore and then yield. Task 2 runs and also attempts to take the

semaphore. It blocks because it cannot, and waits for the semaphore to be available. Task 1 runs

and releases the semaphore and yields again. Task 2 now sees that Task 1 has released it and

takes the semaphore and then yields. Task 1 now attempts to take the semaphore, cant because

Task 2 has it, and therefore it blocks and waits for it to be available. Task 2 runs, releases the

semaphore, and yields. The process repeats for the specified number of iterations. Code Listing 5

shows Task 1 and Code Listing 6 shows Task 2.

The benchmark needs to first be ran without the semaphore and then ran with it. The two

execution times are subtracted from each other to determine the Semaphore Shuffle Time. Task 1

and Task 2, when the sem_exe is set to zero, the semaphore is not used and the benchmark is ran

to determine the execution time of each loop and task-switches. When sem_exe is set to one, the

benchmark utilizes the semaphore.

49

Code Listing 5: Semaphore Shuffle Task 1

The xSemaphoreTake(); command allows the task to take the semaphore if available and the

xSemaphoreGive(); allows the task to give the semaphore. The xSemaphore is the handle for the

binary semaphore that was created while portMAX_DELAY forces the task to wait indefinitely

until the semaphore is available. After the tasks have run for the desired number of iterations,

they delete themselves.

static void prvFirst(void *pvParameters) //Task 1
{
 for(;;)
 {
 for (count1 = 0; count1 < MAX_LOOPS; count1++)
 {
 if (sem_exe == 1)
 {
 xSemaphoreTake(xSemaphore, portMAX_DELAY);
 }
 taskYIELD();

 if (sem_exe == 1)
 {
 xSemaphoreGive(xSemaphore);
 }
 taskYIELD();
 }
 vTaskDelete(xHandleFirst); //Delete Task 1
 }
}

50

Code Listing 6: Semaphore Shuffle Task 2

6.4.4 FreeRTOS Deadlock Breaking Time

The Deadlock Breaking Time benchmark creates 3 tasks each with a higher priority than the next.

Task 3 has the highest priority, Task 2 has a medium priority and Task 1 has the lowest priority.

Task 1 takes the mutex and gets preempted by Task 2. Task 2 runs for a little and gets preempted

by Task 3. Task 3 requests the mutex and a deadlock occurs because Task 1 has it. Task 3 blocks

due to the dead-lock allowing Task 2 to run. Task 2 finishes and delays letting Task 1 run

allowing the it to release the mutex. It then gets preempted immediately by Task 3 which takes

the mutex and then releases it immediately. This benchmark repeats for the desired iterations.

This benchmark measures the dead-lock resolution time. By this, we mean that the time is

inflated by the time of 2 preemptions, and several task-switches that is caused by the dead-lock.

Tasks 1, 2, and 3 are shown in the Code Listings 7, 8, and 9 respectively.

static void prvSecond(void *pvParameters) //Task 2
{
 for(;;)
 {
 for (count2 = 0; count2 < MAX_LOOPS; count2++)
 {
 if (sem_exe == 1)
 {
 xSemaphoreTake(xSemaphore, portMAX_DELAY);
 }
 taskYIELD();

 if (sem_exe == 1)
 {
 xSemaphoreGive(xSemaphore);
 }
 taskYIELD();
 }
 vTaskDelete(xHandleSecond); //Delete Task 2
 }
}

51

Code Listing 7: Dead-Lock Breaking Task 1

The xMutex is the handle for the mutex.

Code Listing 8: Dead-Lock Breaking Task 2

The ONE_TICK variable is again the number of for loops that can be performed for one tick.

ONE_TICK/4 is used because we only want the medium priority to run for a small amount of

static void prvSecond(void *pvParameters) //Task 2
{
 for(;;)
 {
 for(;;)
 {
 if (count2 == MAX_LOOPS)
 {
 vTaskDelete(xHandleSecond); //Delete Task 2
 }

 for (j = 0; j < ONE_TICK/4; j++) //Delay loop
 {
 //Do Nothing
 }
 vTaskDelay(1); //Delay a single tick
 count2++;
 }
 }
}

static void prvFirst(void *pvParameters) //Task 1
{
 for(;;)
 {
 if (count1 == MAX_LOOPS)
 {
 vTaskDelete(xHandleFirst); //Delete Task 1
 }
 xSemaphoreTake(xMutex, portMAX_DELAY); //Take control

 for (i = 0; i < ONE_TICK; i++) //delay loop
 {
 //Do Nothing
 }
 xSemaphoreGive(xMutex); //Release control
 count1++;
 }
}

52

time just to take up some of the tick before Task 1 runs. This will make sure that Task 1 will be

preempted. It will also make sure that there is an intermediate task between Task 1 and 3 in order

to cause the dead-lock.

Code Listing 9: Dead-Lock Breaking Task 3

The benchmark is ran twice by running the code with and without the dead-lock occurring. The

dead_brk variable when set to zero prevents the dead-lock from occurring. The benchmark is

measured with this setup and then dead_brk is set to 1. This causes the dead-lock to occur and is

measured again. The two measurements subtracted from each other produce the dead-lock

resolution time.

6.4.5 FreeRTOS Intertask Messaging Latency

The Intetask Messaging Latency benchmark works is by creating two tasks. Task 2 receives

messages while Task 1 sends them. Task 2 has a higher priority and attempts to receive and when

it does not receive a message it blocks. This allows Task 1 to run, send a message, and then get

preempted by Task 2 who receives the message. Task 2 will attempt to receive another message

and then again blocks. It repeats for the specified number of iterations. The measured time is the

static void prvThird(void *pvParameters)
{
 for(;;)
 {
 if (count3 == MAX_LOOPS)
 {
 vTaskDelete(xHandleThird); //Delete Task 3
 }
 vTaskDelay(1); //Delay a single tick
 i = ONE_TICK; //Reset Task 1

 if (dead_brk == 1)
 {
 xSemaphoreTake(xMutex, portMAX_DELAY); //Take control
 xSemaphoreGive(xMutex); //Release control
 }
 count3++;
 }
}

53

time it takes to send a message, task switch, receive the message, block due to an empty Queue

and then task switch back to Task 1. Again the benchmark must first determine the time it takes

to perform the for loops and extra code as shown in Code Listing 10.

Code Listing 10: Benchmark without Intertask Messaging

The benchmark then runs with the two task sending and receiving messages. This is shown in

Code Listing 11.

Code Listing 11: Intertask Message Latency

static void prvFirst(void *pvParameters)
{
 for(;;)
 {
 for (count1 = 0; count1 < MAX_LOOPS; count1++)
 {
 if (xQueueSendToBack(xQueue, msg_buf, portMAX_DELAY)!=pdPASS)
 {
 // Nothing could be sent because blocking timer expired
 }
 }
 vTaskDelete(xHandleFirst); // Delete Task 1
 }
}

static void prvSecond(void *pvParameters)
{
 for(;;)
 {
 for (count2 = 0; count2 < MAX_LOOPS; count2++)
 {
 if (xQueueReceive(xQueue, recv_buf, portMAX_DELAY)!= pdPASS)
 {
 // Nothing Received because blocking timer expired
 }
 }
 vTaskDelete(xHandleSecond); // Delete Task 2
 }
}

 for (count1 = 0; count1 < MAX_LOOPS; count1++)
 {
 // Do Nothing
 }
 for (count2 = 0; count2 < MAX_LOOPS; count2++)
 {
 // Do Nothing
 }

54

The xQueueReceive(); and xQueueSend(); commands are used to send and receive to the queue

that was created. The xQueue is the handle for the queue, msg_buf variable holds the message to

be sent, and the recv_buf is the variable that holds the message. The two times are subtracted

from each other to provide the Intertask Message Latency and task switching time. The

previously calculated task-switching time is then subtracted to get the Intertask Message Latency

by itself.

6.4.6 FreeRTOS Rhealstone Benchmark

The FreeRTOS Rhealstone Benchmarks with calculated and the statistics of each are presented in

Table 1. The Interrupt Latency benchmark was not included due to difficulties of implementation.

The table presents the average time for each parameter, a maximum and minimum value from

running each benchmark five times of each set of iterations specified in the Appendices, and the

variance of each.

Table 1: FreeRTOS Rhealstone Benchmarks

Rhealstone Benchmarks Average Time Minimum Maximum Variance

Task-Switching Time 230.26 nsec 230.26 nsec 230.26 nsec .00027 nsec

Preemption Time 11.348 µsec 11.346 µsec 11.352 µsec 5.4858 nsec

Semaphore Shuffle Time 321.85 nsec 321.75 nsec 322.63 nsec .87514 nsec

Deadlock Breaking Time 24.041 µsec 19.499 µsec 29.315 µsec 9.8150 usec

Intertask Message Latency 1.5564 µsec 1.5559 µsec 1.5571 µsec 1.2327 nsec

The Rhealstone Benchmark can be calculated from these values using equation 2.1 and 2.2 with

the exception of the Interrupt Latency measurement.

55

CHAPTER 7

CONCLUSION

The completed work in this thesis includes 5 of the Rhealstone benchmarks for the Zynq EPP

Evaluation Board running FreeRTOS. These benchmarks provide a basis for embedded designers

to understand and compare FreeRTOS’s performance on the Zynq EPP ARM core. This thesis

provides a starting point for more advance application development with FreeRTOS by providing

thoroughly commented and detailed code. It provides information on starting a new project with

the Zynq EPP and compiled a plethora of resources that may help further the development. The

thesis began by developing a history to understand why the Zynq EPP was designed and utilizes

the hardware that it does. This provides context on why it is such an important piece of hardware

in today’s engineering world. The basics of the design tools were discussed in a manner that helps

designers understand their overall importance and roles quickly and effectively. With an

understanding of the tools, the Zynq EPP could be used to develop application upon with ease.

The performance of these applications are important to benchmark in order understand the

hardware’s capabilities including its strengths and weaknesses. The thesis provides a stepping

stone for future Zynq EPP development.

56

CHAPTER 8

FUTURE WORK

As more embedded designers work with the Zynq EPP, the community will grow. A greater

understanding of how the hardware can be utilized will become more readily available. With a

stronger understanding of the hardware platform, more resources and support will be available for

designers to reference. The future goals of this research are to implement AMP starting with

Bare-Metal running on both cores. Next, would be to have FreeRTOS running on both cores or

FreeRTOS on one core and Bare-Metal on another. Benchmarking with this type of PS would

continue in order to provide embedded designers with an even stronger understanding of the

system’s capabilities. Additional goals would be to extend more work to the PL. Once a solid

foundation is laid for the Zynq EPP, it will become the training tool for instructing future

embedded engineers.

57

REFERENCES

 [1] (Oct. 2012). Zynq-7000 SoC Operating Systems, [Online] Available:

http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/operating-

systems/index.htm

 [2] R. Wilson. "Multicore RTOS can be AMP or SMP for ARM processors". Available:

http://www.electronicsweekly.com/Articles

 [3] W. Wulf. "HYDRA: The kernel of a multiprocessor operating system," CACM, vol. 17, pp.

337-345, June 1974.

Available: http://www.cs.princeton.edu/~rywang/02f518/papers/hydra.pdf.

 [4] E. Kwatny. "Chapter 1: Introduction to Operating Systems". PowerPoint. Fall 2012.

 [5] (Oct. 2012). Linux and symmetric multiprocessing, [Online] Available:

http://www.ibm.com/developerworks/library/l-linux-smp/

 [6] (Oct. 2012). SMP, [Online] Available:

http://en.wikipedia.org/wiki/File:Shared_memory.svg

 [7] Y. Wiseman. "ASOSI: Asymmetric Operating System Infrastructure". Available:

http://u.cs.biu.ac.il/~wiseman/pdccs2008.pdf

 [8] (Oct. 2012). AMP, [Online] Available: http://en.wikipedia.org/wiki/File:Asmp_2.gif

 [9] (Oct. 2012). Heterogeneous- and Homogeneous-Processor System-Design Approaches;

[Online] Available: http://www.globalspec.com/reference/60873/203279/1-10-

heterogeneous-and-homogeneous- processor-system-design-approaches

58

[10] Intel. "Hyper-Threading Technology Technical User’s Guide". Intel Corporation. Jan,

2003.

[11] N. Dankert. "The Xilinx Zynq-7000 Extensible Processing Platform". Technische

 Univwesität Braunschweig. Mar, 2012.

[12] Intel. "Introduction to the System 310 Microcomputer". Intel Corporation. 1989.

[13] MULTIBUS II Technical Series, "Message Passing in the MULTIBUS II Architecture".

Bill Clemow, 1993, Addison-Wesley.

[14] (Oct. 2012). AMBA Open Specifications, [Online] Available:

http://www.arm.com/products/system-ip/amba/amba-open-specifications.php

[15] (Oct. 2012). IP, [Online] Available: http://www.xilinx.com/products/intellectual-

property/index.htm

[16] (Oct. 2012). TDP, [Online] Available:

http://www.xilinx.com/products/targeted_design_platforms.htm

[17] C. Atack and A. Someren, "The ARM RISC Chip: A Programmer's Guide". Addison-

Wesley. 1993.

[18] (Oct. 2012). Cortex-A9 Processor, [Online]. Available: http://arm.com

[19] (Oct. 2012). Dual-Core ARM Cortex-A9 MPCore Processor, [Online]. Available:

http://www.altera.com/devices/processor/arm/cortex-a9/m-arm-cortex-a9.html

[20] (Oct. 2012). CoreSight, [Online]. Available: http://infocenter.arm.com

[21] (Oct. 2012). SIMD Architectures, [Online]. Available:

http://arstechnica.com/features/2000/03/simd/

59

[22] (Oct. 2012). ARM architecture, [Online]. Available: http://infocenter.arm.com

[23] (Oct. 2012). AMBA Specification Documentation, [Online]. Available:

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.set.amba/index.html

[24] (Oct. 2012). AMBA, [Online]. Available: http://www.arm.com/products/system-

ip/amba/amba-open-specifications.php

[25] Xilinx. "Zynq-7000 EPP Overview". Advanced Product Specifications. Aug, 2012.

[26] (Oct. 2012). AMBA, [Online]. Available: http://www.xilinx.com/products/silicon-

devices/soc/index.htm

[27] (Oct. 2012). Exploring the Xilinx Zynq - Software Platform or Very Complex FPGA,

[Online]. Available: http://www.embedded.com/electronics-

blogs/other/4219403/Exploring-the-Xilinx-Zynq--software-platform--or-very-complex-

FPGA-

[28] Xilinx. "Zynq-7000 Product Brief". Xilinx Inc. June 11, 2012.

[29] (Oct. 2012). ZedBoard.org, [Online]. Available: http://zedboard.org/

[30] Xilinx. "Zynq Evaluation and Development Hardware User's Guide". Xilinx Inc. Aug,

2012.

[31] "Operating Systems", Deitel, Deitel and Choffnes, 3rd edition 2004, Pearson Education, pp.

358-359.

[32] (Oct. 2012). What is an RTOS, [Online]. Available: http://www.freertos.org/.

[33] (Oct. 2012). FreeRTOS is Everywhere, [Online]. Available: http://www.freertos.org/.

[34] R. Barry. Buy or roll your own OS? Neither with FreeRTOS. April 5, 2010. Available:

60

 http://www.embedded.com/electronics-blogs.

[35] (Oct. 2012). FreeRTOS Ports, [Online]. Available: http://www.freertos.org/.

[36] R. Kar. and K. Porter. "Rhealstone: A Real-Time Benchmarking Proposal". Dr. Dobb's

Journal. 1989. Available:

http://collaboration.cmc.ec.gc.ca/science/rpn/biblio/ddj/Website/articles

/DDJ/1989/8902/8902a/8902a.htm

[37] R. Kar.. "Implementing the Rhealstone Real-Time Benchmark". 1990. Available:

http://collaboration.cmc.ec.gc.ca/science/rpn/biblio/ddj/Website/articles/DDJ/1990/9004/90

04d/9004d.htm

[38] (Oct. 2012). Temple University System Chip Design Lab, [Online]. Available:

http://www.temple.edu/scdc/

 [39] Xilinx. “Zynq-7000 All Programmable Soc: Concepts, Tools, and Techniques”. UG873.

Xilinx Inc. July 2, 2012.

[40] (April. 2013). Xilinx ISE Design Suite Overview. [Online]. Available:

http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ise_c_overview.htm

[41] (April. 2013). Tera Term. [Online]. Available: http://ttssh2.sourceforge.jp/

[42] Xilinx. “AXI Reference Guide”. UG 761. Xilinx Inc. March 7, 2011.

[43] Xilinx. “PLBV46 Interface Simplifications”. SP026. Xilinx Inc. October 11, 2007.

[44] Xilinx. “Embedded System Tools Reference Guide”. UG111. Xilinx Inc. July 25, 2012.

[45] (April. 2013). ZynqGeek. [Online]. Available: Zedboard.org/ZynqGeek

61

[46] Xilinx. “Simple AMP Running Linux and Bare-Metal”. XAPP1078. Xilinx Inc. February

13, 2013.

[47] (April. 2013). Xilinx SDK Overview [Online]. Available:

http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_1/SDK_Doc/concepts

/sdk_c_bsp_internal.htm .

[48] Tech Tools. DigiView. “DigiView User’s Guide”. Tech Tools. 2012.

[49] (April. 2013). Digilent Inc. Pmod 6 Pin Test Module. [Online]. Available:

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,401,549&Prod=PMOD-TPH

[50] Xilinx. “ChipScope Pro Software and Cores” UG029. Xilinx Inc. July 25, 2012.

[51] Xilinx. “Zynq-7000 All Programmable SoC Software Developers Guide”. UG821. Xilinx

Inc. July 2, 2012.

[52] Xilinx. “Simple AMP Linux and Bare-metal”. XAPP 1078. Xilinx Inc. April 3, 2013.

[53] (April. 2013). Avnet Speedway Tutorials. [Online] Available:

www.Zedboard.org/trainings-and-videos

[54] (April. 2013). Xilinx Glossary. [Online] Available: www.xilinx.com/company/terms

[55] (April. 2013). Tech Tools Digi View. [Online] Available: http://www.tech-

tools.com/index.html

[56] FreeRTOS. “FreeRTOS Port for Xilinx Zynq Devices” FreeRTOS Ltd. February 12, 2013.

[57] FreeRTOS. “The FreeRTOS Reference Manual” FreeRTOS Ltd. 2013.

62

APPENDIX A

TASK-SWITCHING CODE

/*--- ----------
Author: Timothy J Boger
Date: 4/29/13

Task Switching Benchmark
OS:FreeRTOS
Platform: ZC702 Evaluation Board
References: - “FreeRTOS Port for Xilinx Zynq Devices” FreeRTOS Ltd. February 12, 2013.
 - R. Kar.. "Implementing the Rhealstone Real-Time Benchmark". 1990.
 - Cory Nakaji. "MIO, EMIO and AXI GPIO LEDS for ZC702". 2013.
/*--- ----------*/
// Includes
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
#include "timers.h"
#include "xil_printf.h"
#include "stdio.h"
#include "xparameters.h"
#include "xgpio.h"
#include "xgpiops.h"

//**************************
//AXI Variables
static XGpioPs emio_pmod2;

#define EMIO_54 54
#define EMIO_55 55
#define EMIO_56 56
#define EMIO_57 57

//**************************
//Benchmark Variables
#define MAX_LOOPS_SERIAL 500000 //Max loops for simulation
#define MAX_LOOPS_TASK_SWITCHING 499999 //Accounting for extra Task3 switching

unsigned long count1 = 0, count2 = 0;

//*** ********
// Priorities at which the tasks are created

#define mainFIRST_TASK_PRIORITY (tskIDLE_PRIORITY + 2)
#define mainSECOND_TASK_PRIORITY (tskIDLE_PRIORITY + 2)
#define mainTHIRD_TASK_PRIORITY (tskIDLE_PRIORITY + 3)

63

//*** ********
//Associate Functions with Tasks
static void prvFirst(void *pvParameters);
static void prvSecond(void *pvParameters);
static void prvThird(void *pvParameters);

//*** ********
//Task Handle
xTaskHandle xHandleFirst;
xTaskHandle xHandleSecond;
xTaskHandle xHandleThird;

//*** ********
//Main
int main(void)
{
 prvInitializeExceptions();

 //** *******
 //AXI Setup

 XGpioPs_Config *ConfigPtrPS;

 ConfigPtrPS = XGpioPs_LookupConfig(0);
 XGpioPs_CfgInitialize(&emio_pmod2, ConfigPtrPS,
 ConfigPtrPS->BaseAddr);

 //*** ************
 //Setup PMOD 2 pins
 XGpioPs_SetDirectionPin(&emio_pmod2, EMIO_54, 1);
 XGpioPs_SetOutputEnablePin(&emio_pmod2, EMIO_54, 1);
 XGpioPs_SetDirectionPin(&emio_pmod2, EMIO_55, 1);
 XGpioPs_SetOutputEnablePin(&emio_pmod2, EMIO_55, 1);
 XGpioPs_SetDirectionPin(&emio_pmod2, EMIO_56, 1);
 XGpioPs_SetOutputEnablePin(&emio_pmod2, EMIO_56, 1);
 XGpioPs_SetDirectionPin(&emio_pmod2, EMIO_57, 1);
 XGpioPs_SetOutputEnablePin(&emio_pmod2, EMIO_57, 1);

 //*** ************
 //Setup PMOD 2 outputs to zero
 XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x0);
 XGpioPs_WritePin(&emio_pmod2, EMIO_55, 0x0);
 XGpioPs_WritePin(&emio_pmod2, EMIO_56, 0x0);
 XGpioPs_WritePin(&emio_pmod2, EMIO_57, 0x0);

 //** *******
 //Start Benchmark
 xil_printf("Start of Task Switching Benchmark\n\r");
 xil_printf("Each task runs %D times\r\n", MAX_LOOPS_SERIAL);

 /*** ****************

64

 Serial Non_Switching Measurement

 Measure execution time of task1 and task2 when they are executed
 serially (without task switching).

 Measure the time between the High and Low GPIO output
 /*** *****************/

 xil_printf("Start Serial Non_Switching Measurement\r\n");
 XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x1); //Set GPIO HIGH
 for (count1 = 0; count1 < MAX_LOOPS_SERIAL; count1++)
 {
 //Do Nothing
 }
 for (count2 = 0; count2 < MAX_LOOPS_SERIAL; count2++)
 {
 // Do Nothing
 }

 XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x0); //Set GPIO LOW

 xil_printf("Serial Non_Switching Measurement Done\r\n");

 /*** ****************
 Task Switching Measurement

 Create three tasks. Task 1 and Task 2 will perform the task switching.
 Task 3 controls the start and finish of the program and sets the GPIO pin

 Measure the time between the High and Low GPIO output
 ** ****************/

 xil_printf("Start Task Switching Measurement\r\n");

 //Create three tasks
 xTaskCreate(prvFirst, (signed char *) "F",
 configMINIMAL_STACK_SIZE, NULL,
 mainFIRST_TASK_PRIORITY, &xHandleFirst);
 xTaskCreate(prvSecond, (signed char *) "S",
 configMINIMAL_STACK_SIZE, NULL,
 mainSECOND_TASK_PRIORITY, &xHandleSecond);
 xTaskCreate(prvThird, (signed char *) "T",
 configMINIMAL_STACK_SIZE, NULL,
 mainTHIRD_TASK_PRIORITY, &xHandleThird);

 vTaskStartScheduler();

 /* If all is well, the scheduler will now be running, and the following line
 will never be reached. If the following line does execute, then there was
 insufficient FreeRTOS heap memory available for the idle and/or timer tasks
 to be created. See the memory management section on the FreeRTOS web site

65

 for more details. */
 for(;;);
}
//*** ********************
//Task 3
static void prvThird(void *pvParameters)
{
 for(;;)
 {
 //Runs First due to having highest priority
 XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x1); //Set GPIO
HIGH

 vTaskPrioritySet(xHandleThird, tskIDLE_PRIORITY + 1);
//reduce priority below Task 1 and 2

//-------------------------- Task will yield here. Returns when Task 1 and 2 delete themselves

 //xil_printf("LOW\r\n");
 XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x0); //Set GPIO
LOW

 xil_printf("Task Switching Measurement Done\r\n");
 vTaskDelete(xHandleThird); //Delete Task 3
 }
}

//*** ********************
//Task 1
static void prvFirst(void *pvParameters)
{
 for(;;)
 {
 for (count1 = 0; count1 < MAX_LOOPS_TASK_SWITCHING;
count1++)
 {
 taskYIELD();
 }
 vTaskDelete(xHandleFirst); //Delete Task 1

 }
}

//*** ********************
//Task 2
static void prvSecond(void *pvParameters)
{
 for(;;)
 {
 for (count2 = 0; count2 < MAX_LOOPS_TASK_SWITCHING;
count2++)

66

 {
 taskYIELD();
 }
 vTaskDelete(xHandleSecond); //Delete Task 2
 }
}

//*** ********************
void vApplicationMallocFailedHook(void)
{
 /* vApplicationMallocFailedHook() will only be called if
 configUSE_MALLOC_FAILED_HOOK is set to 1 in FreeRTOSConfig.h. It is a hook
 function that will get called if a call to pvPortMalloc() fails.
 pvPortMalloc() is called internally by the kernel whenever a task, queue or
 semaphore is created. It is also called by various parts of the demo
 application. If heap_1.c or heap_2.c are used, then the size of the heap
 available to pvPortMalloc() is defined by configTOTAL_HEAP_SIZE in
 FreeRTOSConfig.h, and the xPortGetFreeHeapSize() API function can be used
 to query the size of free heap space that remains (although it does not
 provide information on how the remaining heap might be fragmented). */
 taskDISABLE_INTERRUPTS();
 for(;;);
}

//*** ********************
void vApplicationStackOverflowHook(xTaskHandle *pxTask, signed char *pcTaskName)
{
 (void) pcTaskName;
 (void) pxTask;

 /* vApplicationStackOverflowHook() will only be called if
 configCHECK_FOR_STACK_OVERFLOW is set to either 1 or 2. The handle and name
 of the offending task will be passed into the hook function via its
 parameters. However, when a stack has overflowed, it is possible that the
 parameters will have been corrupted, in which case the pxCurrentTCB variable
 can be inspected directly. */
 taskDISABLE_INTERRUPTS();
 for(;;);
}

//*** ********************
void vApplicationSetupHardware(void)
{
 /* Do nothing */
}

67

APPENDIX B

PREEMPTION TIME CODE

/*--- ----------
Author: Timothy J Boger
Date: 4/29/13

Preemption Time Benchmark
OS:FreeRTOS
Platform: ZC702 Evaluation Board
References: - “FreeRTOS Port for Xilinx Zynq Devices” FreeRTOS Ltd. February 12, 2013.
 - R. Kar.. "Implementing the Rhealstone Real-Time Benchmark". 1990.
 - Cory Nakaji. "MIO, EMIO and AXI GPIO LEDS for ZC702". 2013.
/*--- ----------*/
// Includes
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
#include "timers.h"
#include "xil_printf.h"
#include "stdio.h"
#include "xparameters.h"
#include "xgpio.h"
#include "xgpiops.h"

//**************************
//AXI Variables
static XGpioPs emio_pmod2;

#define EMIO_54 54
#define EMIO_55 55
#define EMIO_56 56
#define EMIO_57 57

//**************************
//Benchmark Variables

#define MAX_LOOPS 15000 //Max loops for simulation
#define ONE_TICK 480000 //Number dependent on CPU. Must be longer than sleep period.
 //The amount of for loop iterations per one interrupt tick
#define ONE_TICK_AVERAGE 475620
unsigned long count1, count2, i;

//*** ********
// Priorities at which the tasks are created

#define mainFIRST_TASK_PRIORITY (tskIDLE_PRIORITY + 2)
#define mainSECOND_TASK_PRIORITY (tskIDLE_PRIORITY + 3)

68

#define mainTHIRD_TASK_PRIORITY (tskIDLE_PRIORITY + 4)

//*** ********
//Associate Functions with Tasks

static void prvFirst(void *pvParameters);
static void prvSecond(void *pvParameters);
static void prvThird(void *pvParameters);

//*** ********
//Task and Queue Handles

xTaskHandle xHandleFirst;
xTaskHandle xHandleSecond;
xTaskHandle xHandleThird;

//*** ********
//Main

int main(void)
{
 prvInitializeExceptions();

 //** *******
 //AXI Setup

 XGpioPs_Config *ConfigPtrPS;

 ConfigPtrPS = XGpioPs_LookupConfig(0);
 XGpioPs_CfgInitialize(&emio_pmod2, ConfigPtrPS,
 ConfigPtrPS->BaseAddr);

 //*** ************
 //Setup PMOD 2 pins
 XGpioPs_SetDirectionPin(&emio_pmod2, EMIO_54, 1);
 XGpioPs_SetOutputEnablePin(&emio_pmod2, EMIO_54, 1);
 XGpioPs_SetDirectionPin(&emio_pmod2, EMIO_55, 1);
 XGpioPs_SetOutputEnablePin(&emio_pmod2, EMIO_55, 1);
 XGpioPs_SetDirectionPin(&emio_pmod2, EMIO_56, 1);
 XGpioPs_SetOutputEnablePin(&emio_pmod2, EMIO_56, 1);
 XGpioPs_SetDirectionPin(&emio_pmod2, EMIO_57, 1);
 XGpioPs_SetOutputEnablePin(&emio_pmod2, EMIO_57, 1);

 //*** ************
 //Setup PMOD 2 outputs to zero
 XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x0);
 XGpioPs_WritePin(&emio_pmod2, EMIO_55, 0x0);
 XGpioPs_WritePin(&emio_pmod2, EMIO_56, 0x0);
 XGpioPs_WritePin(&emio_pmod2, EMIO_57, 0x0);

 //** *******

69

 //Start Benchmark

 xil_printf("Start of Preemption Time Benchmark\n\r");
 xil_printf("Each task runs %D times\r\n", MAX_LOOPS);

 /*** **********************
 Serial Execution Measurement Without Task Switching or Preemption

 Measure execution time of task1 and task2 when they are executed
 serially (without messages).

 Measure the time between the High and Low GPIO output
 /*** ********************/

 XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x1); //Set GPIO HIGH
 xil_printf("Start Serial Execution Without Task Switching or Preemption\r\n");

 for (count1 = 0; count1 < MAX_LOOPS; count1++)
 {
 for (i = 0; i < ONE_TICK_AVERAGE; i++)
 {
 //Do Nothing
 }
 }
 for (count2 = 0; count2 < MAX_LOOPS; count2++)
 {
 i = ONE_TICK; //reset i because i never reaches ONE_TICK
 }

 XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x0); //Set GPIO LOW

 xil_printf("Serial Execution Without Task Switching or Preemption Done\r\n");

 /*** **********************
 Task Switching and Preemption Time Measurement

 Create three tasks. Task 1 and Task 2 will perform the Task Switching and Preemption.
 Task 1 does busy work and gets preempted by Task 2.
 Task 2 has a higher priority than Task 1. Task 1 only runs when Task 2 yields.
 Task 3 controls the start and finish of the program and sets the GPIO pin

 Measure the time between the High and Low GPIO output

 ** *********************/
 xil_printf("Start Task Switching and Preemption Time Measurement\r\n");

 //Create three tasks
 xTaskCreate(prvFirst, (signed char *) "F",
 configMINIMAL_STACK_SIZE, NULL,
 mainFIRST_TASK_PRIORITY, &xHandleFirst);
 xTaskCreate(prvSecond, (signed char *) "S",

70

 configMINIMAL_STACK_SIZE, NULL,
 mainSECOND_TASK_PRIORITY, &xHandleSecond);
 xTaskCreate(prvThird, (signed char *) "T",
 configMINIMAL_STACK_SIZE, NULL,
 mainTHIRD_TASK_PRIORITY, &xHandleThird);

 vTaskStartScheduler();

 /* If all is well, the scheduler will now be running, and the following line
 will never be reached. If the following line does execute, then there was
 insufficient FreeRTOS heap memory available for the idle and/or timer tasks
 to be created. See the memory management section on the FreeRTOS web site
 for more details. */
 for(;;);
}
//*** ********************
//Task 3

static void prvThird(void *pvParameters)
{
 for(;;)
 {
 //Runs First due to having highest priority
 XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x1); //Set GPIO HIGH

 vTaskPrioritySet(xHandleThird, tskIDLE_PRIORITY + 1); //reduce
priority below Task 1 and 2

//-------------------------- Task will yield here. Returns when Task 1 and 2 delete themselves

 XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x0); //Set GPIO LOW

 xil_printf("Task Switching and Preemption Time Measurement
Done\r\n");

 vTaskDelete(xHandleThird); //Delete Task 3

 }
}

//*** ********************
//Task 1 - Lower Priority, Gets Preempted

static void prvFirst(void *pvParameters)
{
 for(;;)
 {
 for (count1 = 0; count1 < MAX_LOOPS; count1++)
 {
 for (i = 0; i < ONE_TICK; i++)
 {

71

 //Do Nothing
 }
 }
 vTaskDelete(xHandleFirst); //Delete Task 1
 }
}

//*** ********************
//Task 2 - Higher Priority, Preempts

static void prvSecond(void *pvParameters)
{
 for(;;)
 {
 for (count2 = 0; count2 < MAX_LOOPS; count2++)
 {
 //xil_printf("i value: = %D \r\n", i); //Used to determine
AVERAGE_ONE_TICK
 i = ONE_TICK; //reset i because i never reaches ONE_TICK
 vTaskDelay(1); //Delay a single tick
 }
 vTaskDelete(xHandleSecond); //Delete Task 2
 }
}

//*** ********************
void vApplicationMallocFailedHook(void)
{
 /* vApplicationMallocFailedHook() will only be called if
 configUSE_MALLOC_FAILED_HOOK is set to 1 in FreeRTOSConfig.h. It is a hook
 function that will get called if a call to pvPortMalloc() fails.
 pvPortMalloc() is called internally by the kernel whenever a task, queue or
 semaphore is created. It is also called by various parts of the demo
 application. If heap_1.c or heap_2.c are used, then the size of the heap
 available to pvPortMalloc() is defined by configTOTAL_HEAP_SIZE in
 FreeRTOSConfig.h, and the xPortGetFreeHeapSize() API function can be used
 to query the size of free heap space that remains (although it does not
 provide information on how the remaining heap might be fragmented). */
 taskDISABLE_INTERRUPTS();
 for(;;);
}

//*** ********************
void vApplicationStackOverflowHook(xTaskHandle *pxTask, signed char *pcTaskName)
{
 (void) pcTaskName;
 (void) pxTask;

 /* vApplicationStackOverflowHook() will only be called if
 configCHECK_FOR_STACK_OVERFLOW is set to either 1 or 2. The handle and name
 of the offending task will be passed into the hook function via its

72

 parameters. However, when a stack has overflowed, it is possible that the
 parameters will have been corrupted, in which case the pxCurrentTCB variable
 can be inspected directly. */
 taskDISABLE_INTERRUPTS();
 for(;;);
}

//*** ********************
void vApplicationSetupHardware(void)
{
 /* Do nothing */
}

73

APPENDIX C

INTERTASK MESSAGE LATENCY CODE

/*--- ----------
Author: Timothy J Boger
Date: 4/29/13

Inter-Task Message Latency Benchmark
OS:FreeRTOS
Platform: ZC702 Evaluation Board
References: - “FreeRTOS Port for Xilinx Zynq Devices” FreeRTOS Ltd. February 12, 2013.
 - R. Kar.. "Implementing the Rhealstone Real-Time Benchmark". 1990.
 - Cory Nakaji. "MIO, EMIO and AXI GPIO LEDS for ZC702". 2013.
/*--- ----------*/
// Includes
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
#include "timers.h"
#include "xil_printf.h"
#include "stdio.h"
#include "xparameters.h"
#include "xgpio.h"
#include "xgpiops.h"

//**************************
//AXI Variables
static XGpioPs emio_pmod2;

#define EMIO_54 54
#define EMIO_55 55
#define EMIO_56 56
#define EMIO_57 57

//**************************
//Benchmark Variables
#define MAX_LOOPS 1000000 //Max loops for simulation

char msg_buf[10] = "MESSAGE", recv_buf[10];

#define Queue_Length 10
#define Queue_Item_Size sizeof(msg_buf)

unsigned long count1, count2;

//*** ********
// Priorities at which the tasks are created

74

#define mainFIRST_TASK_PRIORITY (tskIDLE_PRIORITY + 2)
#define mainSECOND_TASK_PRIORITY (tskIDLE_PRIORITY + 3)
#define mainTHIRD_TASK_PRIORITY (tskIDLE_PRIORITY + 4)

//*** ********
//Associate Functions with Tasks

static void prvFirst(void *pvParameters);
static void prvSecond(void *pvParameters);
static void prvThird(void *pvParameters);

//*** ********
//Task and Queue Handles

xTaskHandle xHandleFirst;
xTaskHandle xHandleSecond;
xTaskHandle xHandleThird;

xQueueHandle xQueue;

//*** ********
//Main

int main(void)
{
 prvInitializeExceptions();

 //** *******
 //AXI Setup

 XGpioPs_Config *ConfigPtrPS;

 ConfigPtrPS = XGpioPs_LookupConfig(0);
 XGpioPs_CfgInitialize(&emio_pmod2, ConfigPtrPS,
 ConfigPtrPS->BaseAddr);

 //*** ************
 //Setup PMOD 2 pins
 XGpioPs_SetDirectionPin(&emio_pmod2, EMIO_54, 1);
 XGpioPs_SetOutputEnablePin(&emio_pmod2, EMIO_54, 1);
 XGpioPs_SetDirectionPin(&emio_pmod2, EMIO_55, 1);
 XGpioPs_SetOutputEnablePin(&emio_pmod2, EMIO_55, 1);
 XGpioPs_SetDirectionPin(&emio_pmod2, EMIO_56, 1);
 XGpioPs_SetOutputEnablePin(&emio_pmod2, EMIO_56, 1);
 XGpioPs_SetDirectionPin(&emio_pmod2, EMIO_57, 1);
 XGpioPs_SetOutputEnablePin(&emio_pmod2, EMIO_57, 1);

 //*** ************
 //Setup PMOD 2 outputs to zero
 XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x0);
 XGpioPs_WritePin(&emio_pmod2, EMIO_55, 0x0);

75

 XGpioPs_WritePin(&emio_pmod2, EMIO_56, 0x0);
 XGpioPs_WritePin(&emio_pmod2, EMIO_57, 0x0);

 //** *******
 //Start Benchmark

 xil_printf("Start of InterTask Message Latency Benchmark\n\r");
 xil_printf("Each task runs %D times\r\n", MAX_LOOPS);

 // Create Message Queue

 xQueue = xQueueCreate(Queue_Length, Queue_Item_Size);

 if(xQueue == NULL)
 {
 //The queue could not be created
 xil_printf("Queue Create Error\n\r");
 }

 /*** **********************
 Serial Execution Measurement Without Messages

 Measure execution time of task1 and task2 when they are executed
 serially (without messages).

 Measure the time between the High and Low GPIO output
 /*** *********************/

 XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x1); //Set GPIO HIGH
 xil_printf("Start Serial Execution Measurement Without Messages\r\n");

 for (count1 = 0; count1 < MAX_LOOPS; count1++)
 {
 //Do Nothing
 }
 for (count2 = 0; count2 < MAX_LOOPS; count2++)
 {
 // Do Nothing
 }

 XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x0); //Set GPIO LOW

 xil_printf("Serial Execution Measurement Without Messages Done\r\n");

 /*** **********************
 Inter-Task Message Latency Measurement

 Create three tasks. Task 1 and Task 2 will perform the Messaging.
 Task 1 sends messages, Task 2 receives them.
 Task 2 has a higher priority than Task 1 to make sure it receives messages immediately
 Task 3 controls the start and finish of the program and sets the GPIO pin

76

 Measure the time between the High and Low GPIO output
 ** *********************/

 xil_printf("Start Inter-Task Message Latency Measurement\r\n");

 //Create three tasks
 xTaskCreate(prvFirst, (signed char *) "F",
 configMINIMAL_STACK_SIZE, NULL,
 mainFIRST_TASK_PRIORITY, &xHandleFirst);
 xTaskCreate(prvSecond, (signed char *) "S",
 configMINIMAL_STACK_SIZE, NULL,
 mainSECOND_TASK_PRIORITY, &xHandleSecond);
 xTaskCreate(prvThird, (signed char *) "T",
 configMINIMAL_STACK_SIZE, NULL,
 mainTHIRD_TASK_PRIORITY, &xHandleThird);

 vTaskStartScheduler();

 /* If all is well, the scheduler will now be running, and the following line
 will never be reached. If the following line does execute, then there was
 insufficient FreeRTOS heap memory available for the idle and/or timer tasks
 to be created. See the memory management section on the FreeRTOS web site
 for more details. */
 for(;;);
}
//*** ********************
//Task 3

static void prvThird(void *pvParameters)
{
 for(;;)
 {
 //Runs First due to having highest priority
 XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x1); //Set GPIO HIGH

 vTaskPrioritySet(xHandleThird, tskIDLE_PRIORITY + 1); //reduce
priority below Task 1 and 2

//-------------------------- Task will yield here. Returns when Task 1 and 2 delete themselves

 XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x0); //Set GPIO LOW

 xil_printf("Inter-Task Message Latency Measurement Done\r\n");

 vQueueDelete(xQueue); //Delete Queue

 vTaskDelete(xHandleThird); //Delete Task 3

 }
}

77

//*** ********************
//Task 1 - Sends Messages
static void prvFirst(void *pvParameters)
{
 for(;;)
 {
 for (count1 = 0; count1 < MAX_LOOPS; count1++)
 {
 if(xQueueSendToBack(xQueue, msg_buf,
portMAX_DELAY)!=pdPASS)
 {
 //Nothing could be sent blocking timer expired
 xil_printf("Sent Blocking Timer Ran Out \r\n");
 }
 }
 vTaskDelete(xHandleFirst); //Delete Task 1
 }
}

//*** ********************
//Task 2
static void prvSecond(void *pvParameters)
{
 for(;;)
 {
 for (count2 = 0; count2 < MAX_LOOPS; count2++)
 {
 if(xQueueReceive(xQueue, recv_buf, portMAX_DELAY)!= pdPASS)
 {
 //Nothing Received because blocking timer expired
 xil_printf("Receive Blocking Timer Ran Out \r\n");
 }
 }
 vTaskDelete(xHandleSecond); //Delete Task 2
 }
}

//*** ********************
void vApplicationMallocFailedHook(void)
{
 /* vApplicationMallocFailedHook() will only be called if
 configUSE_MALLOC_FAILED_HOOK is set to 1 in FreeRTOSConfig.h. It is a hook
 function that will get called if a call to pvPortMalloc() fails.
 pvPortMalloc() is called internally by the kernel whenever a task, queue or
 semaphore is created. It is also called by various parts of the demo
 application. If heap_1.c or heap_2.c are used, then the size of the heap
 available to pvPortMalloc() is defined by configTOTAL_HEAP_SIZE in
 FreeRTOSConfig.h, and the xPortGetFreeHeapSize() API function can be used
 to query the size of free heap space that remains (although it does not
 provide information on how the remaining heap might be fragmented). */

78

 taskDISABLE_INTERRUPTS();
 for(;;);
}

//*** ********************
void vApplicationStackOverflowHook(xTaskHandle *pxTask, signed char *pcTaskName)
{
 (void) pcTaskName;
 (void) pxTask;

 /* vApplicationStackOverflowHook() will only be called if
 configCHECK_FOR_STACK_OVERFLOW is set to either 1 or 2. The handle and name
 of the offending task will be passed into the hook function via its
 parameters. However, when a stack has overflowed, it is possible that the
 parameters will have been corrupted, in which case the pxCurrentTCB variable
 can be inspected directly. */
 taskDISABLE_INTERRUPTS();
 for(;;);
}

//*** ********************
void vApplicationSetupHardware(void)
{
 /* Do nothing */
}

79

APPENDIX D

DEADLOCK-BREAK TIME CODE

/*--- ----------
Author: Timothy J Boger
Date: 4/29/13

Deadlock Break-Time Benchmark
OS:FreeRTOS
Platform: ZC702 Evaluation Board
References: - “FreeRTOS Port for Xilinx Zynq Devices” FreeRTOS Ltd. February 12, 2013.
 - R. Kar.. "Implementing the Rhealstone Real-Time Benchmark". 1990.
 - Cory Nakaji. "MIO, EMIO and AXI GPIO LEDS for ZC702". 2013.
/*--- ----------*/
// Includes
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
#include "timers.h"
#include "xil_printf.h"
#include "stdio.h"
#include "xparameters.h"
#include "xgpio.h"
#include "xgpiops.h"
#include "semphr.h"

//**************************
//AXI Variables
static XGpioPs emio_pmod2;

#define EMIO_54 54
#define EMIO_55 55
#define EMIO_56 56
#define EMIO_57 57

//**************************
//Benchmark Variables

#define MAX_LOOPS 10000 //Max loops for simulation 10000
#define ONE_TICK 480000 //Number dependent on CPU. Must be longer than sleep period.
 //The amount of for loop iterations per one interrupt tick
#define ONE_TICK_AVERAGE 475620

unsigned long count1 = 0, count2 = 0, count3 = 0;
unsigned long i, j;
unsigned long dead_brk; // 1= Yes 0 = No

//*** ********

80

// Priorities at which the tasks are created

#define mainFIRST_TASK_PRIORITY (tskIDLE_PRIORITY + 2)
#define mainSECOND_TASK_PRIORITY (tskIDLE_PRIORITY + 3)
#define mainTHIRD_TASK_PRIORITY (tskIDLE_PRIORITY + 4)
#define mainFOURTH_TASK_PRIORITY (tskIDLE_PRIORITY + 5)

//*** ********
//Associate Functions with Tasks
static void prvFirst(void *pvParameters);
static void prvSecond(void *pvParameters);
static void prvThird(void *pvParameters);
static void prvFourth(void *pvParameters);

//*** ********
//Task Handle
xTaskHandle xHandleFirst;
xTaskHandle xHandleSecond;
xTaskHandle xHandleThird;
xTaskHandle xHandleFourth;

xSemaphoreHandle xMutex;

//*** ********
//Main
int main(void)
{
 prvInitializeExceptions();

 //** *******
 //AXI Setup

 XGpioPs_Config *ConfigPtrPS;

 ConfigPtrPS = XGpioPs_LookupConfig(0);
 XGpioPs_CfgInitialize(&emio_pmod2, ConfigPtrPS,
 ConfigPtrPS->BaseAddr);

 //*** ************
 //Setup PMOD 2 pins
 XGpioPs_SetDirectionPin(&emio_pmod2, EMIO_54, 1);
 XGpioPs_SetOutputEnablePin(&emio_pmod2, EMIO_54, 1);
 XGpioPs_SetDirectionPin(&emio_pmod2, EMIO_55, 1);
 XGpioPs_SetOutputEnablePin(&emio_pmod2, EMIO_55, 1);
 XGpioPs_SetDirectionPin(&emio_pmod2, EMIO_56, 1);
 XGpioPs_SetOutputEnablePin(&emio_pmod2, EMIO_56, 1);
 XGpioPs_SetDirectionPin(&emio_pmod2, EMIO_57, 1);
 XGpioPs_SetOutputEnablePin(&emio_pmod2, EMIO_57, 1);

 //*** ************
 //Setup PMOD 2 outputs to zero

81

 XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x0);
 XGpioPs_WritePin(&emio_pmod2, EMIO_55, 0x0);
 XGpioPs_WritePin(&emio_pmod2, EMIO_56, 0x0);
 XGpioPs_WritePin(&emio_pmod2, EMIO_57, 0x0);

 //** *******
 //Start Benchmark

 xil_printf("Start of Deadlock Break-Time Benchmark\n\r");
 xil_printf("Each task runs %D times\r\n", MAX_LOOPS);

 /*** ****************
 Execution Time Measurement Without Deadlocks

 Create four tasks.
 Task 1 Lowest Priority
 Task 2 Medium Priority. Only uses CPU time and sleeps periodically.
 Task 3 Highest Priority. Potential deadlock when it tries to gain control
 of the "region" resource, because low-priority task holds region mostly.

 Task 4 controls the start and finish of the program and sets the GPIO pin

 Note: when dead_brk = 0;
 /** *****************
 Deadlock Resolution Measurement

 Create four tasks.
 Task 1 Lowest Priority
 Task 2 Medium Priority. Only uses CPU time and sleeps periodically.
 Task 3 Highest Priority. Potential deadlock when it tries to gain control
 of the "region" resource, because low-priority task holds region mostly.

 Task 4 controls the start and finish of the program and sets the GPIO pin

 Measure the time between the High and Low GPIO output

 Note: when dead_brk = 1;
 /*** *********************/
 //SET DESIRED BENHCMARK VALUE HERE:
 dead_brk = 1; //Run tasks with/without deadlocking 0 = without, 1 = with
 count1 = count2 = count3 = 0; //Initialize counts

 //Create Semaphore
 xMutex = xSemaphoreCreateMutex();

 if (dead_brk == 0)
 {
 xil_printf("Start Execution Time Measurement Without Deadlocks\r\n");
 }
 else
 {

82

 xil_printf("Start Deadlock Resolution Measurement\r\n");
 }

 //Create four tasks
 xTaskCreate(prvFirst, (signed char *) "FI",
 configMINIMAL_STACK_SIZE, NULL,
 mainFIRST_TASK_PRIORITY, &xHandleFirst);
 xTaskCreate(prvSecond, (signed char *) "S",
 configMINIMAL_STACK_SIZE, NULL,
 mainSECOND_TASK_PRIORITY, &xHandleSecond);
 xTaskCreate(prvThird, (signed char *) "T",
 configMINIMAL_STACK_SIZE, NULL,
 mainTHIRD_TASK_PRIORITY, &xHandleThird);
 xTaskCreate(prvFourth, (signed char *) "FO",
 configMINIMAL_STACK_SIZE, NULL,
 mainFOURTH_TASK_PRIORITY, &xHandleFourth);

 vTaskStartScheduler();

 /* If all is well, the scheduler will now be running, and the following line
 will never be reached. If the following line does execute, then there was
 insufficient FreeRTOS heap memory available for the idle and/or timer tasks
 to be created. See the memory management section on the FreeRTOS web site
 for more details. */

 for(;;);
}
//*** ********************
//Task 4
static void prvFourth(void *pvParameters)
{
 for(;;)
 {
 //Runs First due to having highest priority
 XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x1); //Set GPIO
HIGH

 vTaskPrioritySet(xHandleFourth, tskIDLE_PRIORITY + 1);
//reduce priority below Task 1 and 2

//-------------------------- Task will yield here. Returns when Task 1, 2, and 3 delete themselves

 XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x0); //Set GPIO
LOW

 xil_printf("Measurement Done\r\n");
 vTaskDelete(xHandleFourth); //Delete Task 4
 }
}
//*** ********************
//Task 1

83

// Lower Priority task.
static void prvFirst(void *pvParameters)
{
 for(;;)
 {
 if (count1 == MAX_LOOPS)
 {
 vTaskDelete(xHandleFirst); //Delete Task 1
 }
 xSemaphoreTake(xMutex, portMAX_DELAY); //Take control

 for (i = 0; i < ONE_TICK; i++) //delay loop
 {
 //Do Nothing
 }
 xSemaphoreGive(xMutex); //Release control
 count1++;
 }
}
//*** ********************
//Task 2
// Medium priority task. Only uses CPU time and sleep periodically.
static void prvSecond(void *pvParameters)
{
 for(;;)
 {
 for(;;)
 {
 if (count2 == MAX_LOOPS)
 {
 vTaskDelete(xHandleSecond); //Delete Task 2
 }

 for (j = 0; j < ONE_TICK/4; j++) //delay loop
 {
 //Do Nothing
 }
 vTaskDelay(1); //Delay a single tick
 count2++;
 }
 }
}
//*** ********************
//Task 3
// High priority task. Potential deadlock when it tries to gain control
// of the "region" resource, because low-priority task holds region mostly.
static void prvThird(void *pvParameters)
{
 for(;;)
 {
 if (count3 == MAX_LOOPS)

84

 {
 vTaskDelete(xHandleThird); //Delete Task 3
 }
 vTaskDelay(1); //Delay a single tick
 i = ONE_TICK; //Reset Task 1

 if (dead_brk == 1)
 {
 xSemaphoreTake(xMutex, portMAX_DELAY); //Take control
 xSemaphoreGive(xMutex); //Release control
 }
 count3++;
 }
}
//*** ********************
void vApplicationMallocFailedHook(void)
{
 /* vApplicationMallocFailedHook() will only be called if
 configUSE_MALLOC_FAILED_HOOK is set to 1 in FreeRTOSConfig.h. It is a hook
 function that will get called if a call to pvPortMalloc() fails.
 pvPortMalloc() is called internally by the kernel whenever a task, queue or
 semaphore is created. It is also called by various parts of the demo
 application. If heap_1.c or heap_2.c are used, then the size of the heap
 available to pvPortMalloc() is defined by configTOTAL_HEAP_SIZE in
 FreeRTOSConfig.h, and the xPortGetFreeHeapSize() API function can be used
 to query the size of free heap space that remains (although it does not
 provide information on how the remaining heap might be fragmented). */
 taskDISABLE_INTERRUPTS();
 for(;;);
}
//*** ********************
void vApplicationStackOverflowHook(xTaskHandle *pxTask, signed char *pcTaskName)
{
 (void) pcTaskName;
 (void) pxTask;

 /* vApplicationStackOverflowHook() will only be called if
 configCHECK_FOR_STACK_OVERFLOW is set to either 1 or 2. The handle and name
 of the offending task will be passed into the hook function via its
 parameters. However, when a stack has overflowed, it is possible that the
 parameters will have been corrupted, in which case the pxCurrentTCB variable
 can be inspected directly. */
 taskDISABLE_INTERRUPTS();
 for(;;);
}
//*** ********************
void vApplicationSetupHardware(void)
{
 /* Do nothing */
}

85

APPENDIX E

SEMAPHORE SHUFFLE TIME CODE

/*--- ----------
Author: Timothy J Boger
Date: 4/29/13

Semaphore Shuffle Benchmark
OS:FreeRTOS
Platform: ZC702 Evaluation Board
References: - “FreeRTOS Port for Xilinx Zynq Devices” FreeRTOS Ltd. February 12, 2013.
 - R. Kar.. "Implementing the Rhealstone Real-Time Benchmark". 1990.
 - Cory Nakaji. "MIO, EMIO and AXI GPIO LEDS for ZC702". 2013.
/*--- ----------*/
// Includes
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
#include "timers.h"
#include "xil_printf.h"
#include "stdio.h"
#include "xparameters.h"
#include "xgpio.h"
#include "xgpiops.h"
#include "semphr.h"

//**************************
//AXI Variables
static XGpioPs emio_pmod2;

#define EMIO_54 54
#define EMIO_55 55
#define EMIO_56 56
#define EMIO_57 57

//**************************
//Benchmark Variables

#define MAX_LOOPS 100000 //Max loops for simulation 100000

unsigned long count1 = 0, count2 = 0;
unsigned long sem_exe; // 1= Yes 0 = No

//*** ********
// Priorities at which the tasks are created

#define mainFIRST_TASK_PRIORITY (tskIDLE_PRIORITY + 2)
#define mainSECOND_TASK_PRIORITY (tskIDLE_PRIORITY + 2)

86

#define mainTHIRD_TASK_PRIORITY (tskIDLE_PRIORITY + 3)

//*** ********
//Associate Functions with Tasks
static void prvFirst(void *pvParameters);
static void prvSecond(void *pvParameters);
static void prvThird(void *pvParameters);

//*** ********
//Task Handle
xTaskHandle xHandleFirst;
xTaskHandle xHandleSecond;
xTaskHandle xHandleThird;

xSemaphoreHandle xSemaphore;

//*** ********
//Main
int main(void)
{
 prvInitializeExceptions();

 //** *******
 //AXI Setup

 XGpioPs_Config *ConfigPtrPS;

 ConfigPtrPS = XGpioPs_LookupConfig(0);
 XGpioPs_CfgInitialize(&emio_pmod2, ConfigPtrPS,
 ConfigPtrPS->BaseAddr);

 //*** ************
 //Setup PMOD 2 pins
 XGpioPs_SetDirectionPin(&emio_pmod2, EMIO_54, 1);
 XGpioPs_SetOutputEnablePin(&emio_pmod2, EMIO_54, 1);
 XGpioPs_SetDirectionPin(&emio_pmod2, EMIO_55, 1);
 XGpioPs_SetOutputEnablePin(&emio_pmod2, EMIO_55, 1);
 XGpioPs_SetDirectionPin(&emio_pmod2, EMIO_56, 1);
 XGpioPs_SetOutputEnablePin(&emio_pmod2, EMIO_56, 1);
 XGpioPs_SetDirectionPin(&emio_pmod2, EMIO_57, 1);
 XGpioPs_SetOutputEnablePin(&emio_pmod2, EMIO_57, 1);

 //*** ************
 //Setup PMOD 2 outputs to zero
 XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x0);
 XGpioPs_WritePin(&emio_pmod2, EMIO_55, 0x0);
 XGpioPs_WritePin(&emio_pmod2, EMIO_56, 0x0);
 XGpioPs_WritePin(&emio_pmod2, EMIO_57, 0x0);

 //** *******
 //Start Benchmark

87

 xil_printf("Start Semaphore Shuffle Benchmark\n\r");
 xil_printf("Each task runs %D times\r\n", MAX_LOOPS);

 /*** ****************
 Task Execution Time Without Semaphore Shuffling Measurement

 Create three tasks. Task 1 and Task 2 will perform the Task Execution.

 Task 3 controls the start and finish of the program and sets the GPIO pin

 Measure the time between the High and Low GPIO output

 Note: when sem_exe = 0;

 /** *****************
 Semaphore Shuffling Measurement

 Create three tasks. Task 1 and Task 2 will perform Semaphore Shuffling.
 Time it takes a Task to acquire a semaphore that is owned by another equal priority task.

 Task 3 controls the start and finish of the program and sets the GPIO pin

 Measure the time between the High and Low GPIO output

 Note: when sem_exe = 1;

 /*** *********************/
 //SET DESIRED BENHCMARK VALUE HERE:
 sem_exe = 1; //Run tasks with/without semaphore shuffling 0 = without, 1 = with

 if (sem_exe == 0)
 {
 xil_printf("Start Measurement without Semaphore Shuffling \r\n");
 }
 else
 {
 xil_printf("Start Task Semaphore Shuffling Measurement\r\n");
 //Create Semaphore
 vSemaphoreCreateBinary(xSemaphore);
 }

 //Create three tasks
 xTaskCreate(prvFirst, (signed char *) "F",
 configMINIMAL_STACK_SIZE, NULL,
 mainFIRST_TASK_PRIORITY, &xHandleFirst);
 xTaskCreate(prvSecond, (signed char *) "S",
 configMINIMAL_STACK_SIZE, NULL,
 mainSECOND_TASK_PRIORITY, &xHandleSecond);
 xTaskCreate(prvThird, (signed char *) "T",

88

 configMINIMAL_STACK_SIZE, NULL,
 mainTHIRD_TASK_PRIORITY, &xHandleThird);

 vTaskStartScheduler();

 /* If all is well, the scheduler will now be running, and the following line
 will never be reached. If the following line does execute, then there was
 insufficient FreeRTOS heap memory available for the idle and/or timer tasks
 to be created. See the memory management section on the FreeRTOS web site
 for more details. */

 for(;;);
}
//*** ********************
//Task 3
static void prvThird(void *pvParameters)
{
 for(;;)
 {
 //Runs First due to having highest priority
 XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x1); //Set GPIO
HIGH

 vTaskPrioritySet(xHandleThird, tskIDLE_PRIORITY + 1);
//reduce priority below Task 1 and 2

//-------------------------- Task will yield here. Returns when Task 1 and 2 delete themselves

 XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x0); //Set GPIO
LOW

 xil_printf("Measurement Done\r\n");
 vTaskDelete(xHandleThird); //Delete Task 3
 }
}

//*** ********************
//Task 1
static void prvFirst(void *pvParameters)
{
 for(;;)
 {
 for (count1 = 0; count1 < MAX_LOOPS; count1++)
 {
 if (sem_exe == 1)
 {
 xSemaphoreTake(xSemaphore, portMAX_DELAY);
 }
 taskYIELD();

 if (sem_exe == 1)

89

 {
 xSemaphoreGive(xSemaphore);
 }
 taskYIELD();
 }
 vTaskDelete(xHandleFirst); //Delete Task 1
 }
}
//*** ********************
//Task 2
static void prvSecond(void *pvParameters)
{
 for(;;)
 {
 for (count2 = 0; count2 < MAX_LOOPS; count2++)
 {
 if (sem_exe == 1)
 {
 xSemaphoreTake(xSemaphore, portMAX_DELAY);
 }
 taskYIELD();

 if (sem_exe == 1)
 {
 xSemaphoreGive(xSemaphore);
 }
 taskYIELD();
 }
 vTaskDelete(xHandleSecond); //Delete Task 2
 }
}

//*** ********************
void vApplicationMallocFailedHook(void)
{
 /* vApplicationMallocFailedHook() will only be called if
 configUSE_MALLOC_FAILED_HOOK is set to 1 in FreeRTOSConfig.h. It is a hook
 function that will get called if a call to pvPortMalloc() fails.
 pvPortMalloc() is called internally by the kernel whenever a task, queue or
 semaphore is created. It is also called by various parts of the demo
 application. If heap_1.c or heap_2.c are used, then the size of the heap
 available to pvPortMalloc() is defined by configTOTAL_HEAP_SIZE in
 FreeRTOSConfig.h, and the xPortGetFreeHeapSize() API function can be used
 to query the size of free heap space that remains (although it does not
 provide information on how the remaining heap might be fragmented). */
 taskDISABLE_INTERRUPTS();
 for(;;);
}

//*** ********************
void vApplicationStackOverflowHook(xTaskHandle *pxTask, signed char *pcTaskName)

90

{
 (void) pcTaskName;
 (void) pxTask;

 /* vApplicationStackOverflowHook() will only be called if
 configCHECK_FOR_STACK_OVERFLOW is set to either 1 or 2. The handle and name
 of the offending task will be passed into the hook function via its
 parameters. However, when a stack has overflowed, it is possible that the
 parameters will have been corrupted, in which case the pxCurrentTCB variable
 can be inspected directly. */
 taskDISABLE_INTERRUPTS();
 for(;;);
}

//*** ********************
void vApplicationSetupHardware(void)
{
 /* Do nothing */
}

