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ABSTRACT 
 

Embedded system designers require deterministic, real-time operating system (RTOS) 

support for the commonly available processing hardware. The Xilinx Zynq Extensible Processing 

Platform (EPP) offers software, hardware, and input/output (I/O) programmability on a single 

chip. The Xilinx Zynq EPP features a Dual ARM Cortex-A9 MPCore, Advanced Microcontroller 

Bus Architecture (AMBA) Advanced eXtensible Interface 4 (AXI4) interconnect, and Xilinx 

Kintex-7 series Programmable Logic (PL) which provide the requisite capabilities for the 

increasing demands of embedded processing applications. The AMBA AXI4 interconnect 

provides high speed point to point interconnections between the ARM processor cores and the 

Field Programmable Gate Array (FPGA) structure allowing for rapid data transmission to 

optimize system performance. The incorporation of an RTOS ensures predictable execution times 

of applications. Benchmarks, such as the Rhealstone, were developed to provide designers with a 

method of evaluating and comparing these multitasking RTOSs running on various hardware 

platforms. This thesis research performs Rhealstone benchmarking and evaluates the AMBA 

AXI4 interconnect performance while executing FreeRTOS on the ARM core of the Zynq EPP 

device. 
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CHAPTER 1 

INTRODUCTION 

1.1   Motivation 
 
The goal of this thesis research is to provide performance benchmarks for the Xilinx Zynq-7000 

Extensible Processing Platform (EPP) and to provide a premise for future embedded design. The 

Xilinx Zynq EPP is capable of running Asymmetric Multiprocessing (AMP) of a Real-Time 

Operating System (RTOS) called FreeRTOS. [1] The Dual ARM Cortex A-9 MPCore processor 

is provided with various features including a primary Advanced Microcontroller Bus Architecture 

(AMBA) Advanced eXtensible Interface 4 (AXI4) 64-bit interconnect that can be used with 

various soft-core and hard-core peripherals and the 28nm Programmable Logic (PL) of the Xilinx 

Kintex-7 series Field Programmable Gate Array (FPGA). Embedded system designers require 

these benchmarks in order to evaluate and design an efficient Processing System (PS).  

Multicore processor architectures have the potential to provide increased performance and power 

efficiency, but at the cost of programming complexity. [2] The complexity involved has been the 

hindrance in the widespread adoption of multicore architecture. Multicore systems can be 

implemented in Symmetric Multiprocessing (SMP) or AMP modes. These modes refer to how the 

Operating System (OS) kernel will run on a system that has more than one Central Processing 

Unit (CPU) or core.  

A kernel is the underlying main component of the majority of computer OS. It bridges the gap 

between the hardware and the application executing on the PS. The kernel's responsibilities 

include managing the communication between hardware and software components to allocate the 

system's resources accordingly through system calls and inter-process communication. The 
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hardware components it manages include the processor and I/O devices. [3] There are various 

types of kernel structures including monolithic, modular, extensible and layered. Figure 1 depicts 

these structures. 

 
 

Figure 1: Kernel Layout: (a) Monolithic (b) Modular  (c) Extensible (d) Layered [4] 

Monolithic kernels are the most primitive with the OS code executing in the same address space. 

This direct intercommunication is highly efficient and increases performance, but makes it 

difficult to manage and maintain. Modular kernels allow for better overall functionality with ease 

of management due to its modular nature, but lacks performance. Layered kernels are used to 

divide components into manageable layers, but have degraded performance when communication 

between multiple levels is required. Extensible kernels, also known as microkernels, execute 

services in user space as servers to improve modularity and maintainability while also having a 

lower level skeletal nucleus that controls basic process synchronization. [4] 

With SMP, the kernel itself can run on any processor and can run simultaneously on multiple 

processors. SMP handles programs using multiple processors sharing a common OS. There is a 

single copy of the operating system that supervises all of the processors and shares everything 

symmetrically among them. The processors share memory and a bus as shown in Figure 2. [5] 
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Figure 2: Typical Symmetric Multiprocessing System Layout [6] 

AMP is the employ of more than one CPU with a specified role with each kernel running 

exclusively. This means each processor shares the same physical memory, but have 

independently running OS on each core. With this method, processes can run on either processor. 

Figure 3 shows a typical AMP system layout. [7] 

 
 

Figure 3: Typical Asymmetric Multiprocessing System Layout [8] 

There are heterogeneous and homogeneous processor systems. A heterogeneous system is the use 

of different processor cores with one for general-purpose work and the other for such things as 

DSP. The advantage of this approach is the ability to match processor cores with features that are 

appropriate for on-chip tasks applications. Tailoring a processor core to a specific task forces the 

processor to limit its number of abilities to no more than are required by removing unneeded 

features from each processor. The heterogeneous design needs a different software-development 

tool set, which would include a compiler, assembler, debugger, instruction-set simulator, and OS 

for each of the different processor cores used in the system design. [9] Heterogeneous processors 
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generally do not use SMP due to the processors not being capable of executing identical 

instructions from the same copy in memory.  

Homogeneous processors, such as Xilinx's Zynq EPP with two ARM cores, run the same code 

from a single copy in memory using SMP. These processors can also be used with AMP creating 

a more independent processor. In this case each processor can run different code from its personal 

local memory. AMP with the Xilinx Zynq EPP, for example, could utilize a RTOS on one 

processor while running Linux on the other or a RTOS could be resident on both cores. [1] 

Multicore processing can be somewhat complex and intimidating, so it is important to have an OS 

developed that offers ease of use independent of the system configuration. OSs can provide 

autonomy to process load balancing and handling which alleviates concern about how the 

processors are explicitly handling the workload. Some OS are designed to automatically run 

processes on any available processor to provide transparent mapping of multithreading on a 

multicore architecture. [2] Multithreading is the ability of efficiently executing multiple threads 

running on a single core by utilizing thread-level and instruction-level parallelism. 

Multiprocessing involve the use of multiple complete CPUs in a single system. These 

complimentary systems can sometimes be combined in systems with multiple multithreading 

cores. [10] 

FPGAs are used to develop soft-core processors that are used for various embedded applications. 

The use of FPGAs as soft-core processors such as the 32-bit Xilinx MicroBlaze have some utility, 

but have various complications including synthesizing the various interconnects on the 

programmable fabric. The challenge of using FPGAs with embedded CPUs lies in the 

communication between the processor and PL. Using a processing platform, a processor centric 

design, compared to an FPGA has various advantages. In the most recent version of the FPGA 

architecture by Xilinx, the Vertex FX FPGA series, Power PC (PPC) cores are used as hard 
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Intellectual Property (IP). [11] IP is an algorithm or function that is provided to designers through 

licensing from software developers. These predefined functions are intended to save time by 

prebuilt solution for such things as processors and bus interfaces. [15]  

A FPGA centric design means that the FPGA is the master and PPC is the slave. Development 

requires the configuration of the FPGA in order to use the CPU cores and cannot boot 

independently of the FPGA fabric. On the other hand, the Zynq EPP includes a Dual ARM 

Cortex-A9 as hard IP. This means the ARM PS is the master and the FPGA is the slave. 

Additionally, the CPU can boot without powering or configuring the FPGA. [11]  

The Zynq EPP utilizes the AMBA AXI4 interconnects in its System-on-a-Chip (SoC) design. An 

embedded designer needs to understand how to utilize the hardware they are given. The bus 

interconnect, in any system, is the communication link between hardware. To understand how to 

utilize the AMBA AXI4 interconnect, we can look at previous bus architectures and methods 

used to handle multiprocessing systems. The Multibus is an asynchronous bus standard developed 

by Intel in 1974. The Multibus was designed to be robust and became a widely used industry 

standard in the 1980s with systems still currently operational. [12]  

The Intel MULTIBUS II was designed to address the multiprocessing problem caused by the 

increased demands for processing power. The MULTIBUSS II was designed to improve system 

performance and reduce the complexity of multiprocessing systems. It introduced the mechanism 

of message passing to improve the performance of a system and in doing so simplified 

multiprocessing system implementations. The mechanism that supports this message passing is 

the Message Passing Coprocessor (MPC).  

There are various ways to implement a multiprocessing system. Traditionally, processors can 

share data using the bus and a common memory area. This memory is either available globally or 

dual-ported into the local memory of one processor. [12] Another method for data sharing is to 
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have a host CPU and a disk controlling with communication done through message passing. The 

use of the MPC in this manner is demonstrated in Figure 4.  

 
 

Figure 4: Message Passing using the MULTIBUS II [13] 

Depending on how this message passing is implemented, the bus can become a bottleneck. 

However, efficiently and effectively getting data quickly into the local memory of the second 

CPU can achieve performance improvements. The MULTIBUS II supported all of these methods 

for communication.  

The design objectives behind using the AMBA for SoC designs is to improve processor 

independence by encouraging modular system design, the development of reusable libraries for 

peripherals and system IP and  on-chip communication that minimizes silicon infrastructure while 

maintaining  low power and high performance. [14] These IP blocks address the various needs of 

embedded designers with pre-designed cores that can be implemented on Xilinx FPGA devices. 

[15] For example, there are IP blocks designed for Xilinx Targeted Design Platforms (TDP) 

provided by Xilinx and its Alliance Program Members. TDPs are development kits released with 

boards, Integrated Software Environments (ISE) Design Suite tools, IP cores, reference designs, 

and designer support for initial application development. [16]  
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The System Chip Design Laboratory (SCDL) is a research facility of the Department of Electrical 

and Computer Engineering at Temple University’s College of Engineering. SCDL was started in 

1999 and is a descendant of the Advanced Processor Systems Laboratory (APSL) established in 

1987. The laboratory worked with the Multibus II multiprocessor computer system which utilized 

the Intel iRMX III real-time multitasking operating system. The SCDL pursues innovative 

investigations in the SoC design methodology utilizing hard processor IP cores, configurable SoC 

and soft core architectures on FPGAs, on-chip busing arbitration architectures, and heterogeneous 

multiple processor RTOS. [38]  

1.2   Research Objectives 
 
The objective of this thesis is to develop embedded operating system support for the Xilinx Zynq 

EPP with multitasking FreeRTOS. Doing so will develop an understanding of effectively 

implementing FreeRTOS on the platform and to produce benchmark results that can be used 

evaluate the AMBA AXI4 interconnect performance. The Rhealstone real-time benchmark will 

be used to perform this benchmarking. This will provide embedded designers with a platform for 

further implementation on the Zynq EPP. This work will be added to the Xilinx and Zynq 

Evaluation & Development (Zed) board websites as a resource to inform and strengthen the Zynq 

community.  

1.3   Organization of the Thesis 
 
The thesis is organized as follows. A background is given in order to lay the foundation for this 

work. The ARM Architecture is discussed, followed by an outline of the ARM Cortex A9 

architecture. AMBA is described to develop an understanding of its associations with the Dual 

ARM processor. The Zynq EPP architecture is discussed along with Zynq EPP platform which is 

utilized on both the Xilinx Zynq Evaluation Board and the Zed Board. A brief discussion about 

RTOSs followed by a discussion of implementing FreeRTOS is provided. The Rhealstone 
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Benchmark's use and implementation is reviewed and its application to the work in this thesis is 

discussed. The Design Tools used to develop on the Zynq EPP is review and key software and 

hardware design elements are discussed. The thesis results are discussed and concluded. Finally, 

the framework for future work with the Zynq EPP is discussed. 
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CHAPTER 2 

BACKGROUND 

2.1   ARM Architecture 

2.1.1   Introduction 
 
ARM is known for its high performance for low price and low power consumption. The reduced 

instruction set computer (RISC) instruction set architecture (ISA) of the ARM is not designed to 

produce the most powerful processor, but to create a processor capable of powering the latest 

technologies at a price that could be used in low-cost processing systems. The advantages of 

RISC stemmed from the concept that performance could be improved through smaller chip sizes 

with shorter signal paths implying shorter instruction cycles which results in a faster processor. A 

smaller die size is a result of the RISC chip being simpler and therefore requiring fewer 

transistors to implement the smaller instruction set. RISC was intended to shorten the design 

process through smaller chips with fewer instructions making the design less complicated and 

ultimately taking less time to complete and debug. [17] 

The history of the ARM resides in the United Kingdom with Acorn Computers Ltd. ARM was 

established in Cambridge, originally know as Acorn RISC Machine, and developed its first ARM 

chip between 1983-1985. The company became popular when Acorn's British Broadcasting 

Corporation (BBC) Microcomputer which was widely used in UK classrooms during the 1980's. 

In 1985, the ARM1 was released and focused on improved instruction sets in order to improve 

and maximize performance of the systems using it. [17]  

The Archimedes home computer launched in 1987 was the first commercial product using the 

ARM. It utilized the ARM2 8 MHz processor and was the first RISC processor available in a 

low-cost PC. The intent of these first two processors was to offer quality performance in a low-
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cost system. Since Intel and Motorola-based computers competed on the market with their high-

end personal and workstation computer systems the ARM based systems were overshadowed. 

[17]  

The release of the ARM3 in 1989 was designed to improve the performance of the ARM by 

including a 4 Kbyte on-chip data and instruction cache. This 25 MHz processor could run at a 

higher clock rate due to the denser fabrication of the chip compared to its predecessors and 

inherently improving the overall performance while using the same support chips and low cost 

memory as the ARM2. In 1990 the ARM2aS, a static version of the processor, added low power 

consumption to the list of ARM feature which opened ARM to the personal hand-held and 

communications devices market. Though this specific processor only reached prototyping stage 

of mobile devices, it sparked greater interested in RISC and the ARM family. [17] 

 

With financial growth of Acorn and the increasing demand for RISC processors, an agreement 

was made between Acorn, VLSI Technology and Apple. This resulted in the foundation of ARM 

Ltd and the name change to the Advanced RISC Machine (ARM). ARM Ltd licenses its designs 

to chip foundries for royalties rather than establishing its own fabrication facilities. VLSI 

Technology, who had built all previous ARM chips, was the first licensee. ARM Ltd's first 

development after the ARM3, was the ARM6 which included full 32-bit addressing. This was 

designed to meet the requests of its new partner, Apple. [17] ARM, since then, has continued its 

growth in various avenues including its ARM Cortex A9 being used on the Zynq EPP. 

2.1.2   ARM Cortex A9 
 

ARM Cortex™-A9 processor is available as either a single core or configurable multicore 

processor with either synthesizable or hard-macro implementations. The ARM Cortex-A9 

processor is available as a single core or MPCore model with up to four cores. MPCore is an 

integrated SMP or AMP with multiple processors in a single device. The Cortex-A9 processor is 
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a power efficient, high performance option for a cost-sensitive system with power or thermal 

constraints. Full virtual memory capabilities are provided by the L1 cache and implemented byt 

the ARMv7-A architecture. It can execute 32-bit ARM instructions as well as 16-bit and 32-bit 

Thumb instructions and 8-bit Java bytecodes. [18] Figure 5 shows the Cortex-A9 Dual MP Core 

Architecture. 

 

Figure 5: Cortex-A9 Dual MP Core Architecture [19] 

The processor was designed with high efficiency in mind with dual-issue superscalar, out-of-

order, and a speculating dynamic length pipeline. The Cortex-A9 architecture supports 16, 32 or 

64KB configurations of four way associative L1 caches and an optional L2 cache controller up to 

8MB. The Cortex-A9 has physical IP available for designers. The processor comes with the ARM 

Development Suite 5 tools and CoreSight Debug & Trace IP. CoreSight is an on-chip debug and 

real-time trace kit for SoC designs utilizing ARM processors to optimize debugging the system. 

[20] 

The Cortex A-9 MPCore with 2 cores integrated as hard IP component on the Zynq EPP is a 800-

MHz dual-core processor that supports both SMP and AMP. Each processor core has a dual-issue 

superscalar pipeline, the NEON processing engine, a single- and double-precision floating-point 
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unit (FPU), and 32-KB instruction and 32-KB data cache with cache coherence. The ARM 

Cortex-A series processors utilize NEON technology which is a 128-bit Single Instruction 

Multiple Data (SIMD) engine used to process multimedia formats. [21] SIMD is an extension to 

the architecture of the ARM providing operation extensions for registers and floating-point. [22]  

The Cortex-A Series also includes a Memory Management Unit (MMU), a Snoop Control Unit 

(SCU), shared 8-way 512-KB associative L2 cache, generic interrupt controller, Direct Memory 

Access Controller (DMAC), and a 32-bit general purpose timer on the chip. [19] The ARM 

Cortex-A9 processor, when combined with embedded peripherals, interfaces, and on-chip 

Memory (OCM), create a Hard Processor System (HPS). Connecting the HPS and FPGA of the 

SoC with a high-bandwidth on-chip backbone provides large bandwidth for sharing data between 

the ARM processor and hardware accelerators within the FPGA fabric. 

2.2   AMBA Bus 
 

The ARM Cortex A9 AMBA 3 located on the chip is the backbone for communication within the 

SoC. The AMBA has been widely used as an on-chip bus architecture in many SoC designs. The 

AMBA has since exceeded its initial design potential and has gone beyond the use in 

microcontroller devices. The AMBA 1 consists of the Advanced Peripheral Bus (APB) and 

Advanced System Bus (ASB). In the second generation, AMBA 2, ARM added a single clock-

edge protocol called AMBA High-performance Bus (AHB). AMBA 3, the third generation 

AMBA, reached higher performance interconnects by adding the Advanced eXtensible Interface 

(AXI). It also included the Advanced Trace Bus (ATB) which was designed to work with the 

CoreSight on-chip trace and debug tools. [24]  

The AMBA 3 specifications replaced AMBA 2, but AMBA 2 peripherals can still be used on 

AMBA 3 based systems. The protocol specification of the AMBA family is an ARM open 

standard for on-chip buses and provides solutions to SoC interconnections and functional block 
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management for embedded design with multiple processors and multiple peripherals. [23] The 

AMBA 3's interface protocol specification encompasses all the required on-chip data 

traffic requirements. These requirements include high data throughput from data 

intensive processes, low bandwidth communication with low power and gate count, and 

on-chip testing and debugging. [24] 

AMBA 3's AXI is an interface and a protocol, but is not a bus. There is no bus arbitration because 

it is utilizes point to point connections. [53] AXI provides support for data traffic throughput with 

five unidirectional channels and out-of-order data transaction capabilities. This allows for high 

speed operations through the pipelined interconnections, simultaneous reading and writing 

transactions, and efficient high latency peripheral support and bridging between frequencies for 

power management. The AHB interface enables high efficiency interconnects between single 

frequency subsystems of simpler peripherals when the AXI is not need. The structure of the AHB 

is a fixed pipelined and an unidirectional channel allows for back compatibility with AMBA 2 

peripherals. [24] 

APB provides low bandwidth transaction support to access necessary configuration registers in 

peripherals as well as data traffic in peripherals with low bandwidth. This interface is highly 

compact and low power isolates data traffic from the AHB and AXI high performance 

interconnects. ATB adds a data trace interface for data diagnostics in a trace system. This 

provides debugging capabilities due to the trace components and bus sitting in parallel with 

interconnects and peripherals. [24] 

2.3   Zynq Extensible Processing Platform 

2.3.1   Introduction 
 
The Zynq EPP 7000 family of devices combine the hardware programmability of an FPGA and 

the software programmability of a processor. The overview of the hardware is depicted in Figure 
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6. The Zynq EPP platform's PS includes the Dual ARM Cortex-A9 MPCore that utilizes 32kB 

instruction and data L1 cache per core, shared 512kB L2 cache, FPU and NEON media engine. 

The memory interfaces include 256kB OCM in addition to NAND Flash and NOR Flash Memory 

Controller which includes DDR2, LPDDR2, and DDR3. Peripherals include Queued Serial 

Peripheral Interface (QSPI), USB2.0, GbE, CAN, SDIO, Universal Asynchronous Receiver and 

Transmitter (UART), SPI, I2C, General Purpose I/O (GPIO), 12bit 1 Mbps ADC, AES and SHA-

256. [25]  

There are four available models of the Zynq EPP designed for various applications. The available 

FPGA types for each of the model types include the Artix-7 for Z-7010 and Z-7020 and the 

Kintex-7 for Z-730 and Z-7045. The FPGA sizes vary and include logic cells that range from 

30k-350k, block RAM ranging from 240kB-2,180kB, DSP Slices from 80-900, and user I/Os of 

150-400. The Kintex-7 devices also have eight PCI Express2 and 12.5 Gbps Transceivers. Quick 

EMUlator (QEMU), a virtual platform, is used for the model of the processing subsystem. [25] 

 

Figure 6: Xilinx Zynq-7000 Extensible Processing Platform Architecture [26] 
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Xilinx implemented AMBA on the Zynq as two switch matrices. The AMBA AXI interconnect 

exists in two areas on the Zynq EPP. One is grouped around the DRAM controller and the other 

is used for general peripherals. There are two switches on the peripheral side. The first has one 

connection for a hard static memory controller, eight hard I/O controller blocks, five connections 

for the CPU cluster, and four stubs that end at the programmable fabric. The second has five 

connections ending in the fabric, two connections for the hard DRAM controller, and two CPU 

ports. [27] 

One of these five ports supports the Accelerator Coherence Port (ACP). This port provides the 

ability for the accelerator to snoop the processor cluster’s caches, but not the cluster’s OCM so a 

CPU task could leave a control and data block in cache. From here, an accelerator in the 

programmable fabric can read the block directly from cache and therefore avoiding a write-back 

to DRAM. This protocol is not symmetric and therefore the accelerators are not fully coherent. 

This is because the CPU reads and writes do not snoop memory in the fabric. The AMBA I/O 

ports, the DRAM controller accessible AXI ports, and ACP provide the Zynq EPP with a range of 

programmable fabric structure design possibilities. The current available hardware platforms 

include the Xilinx Zynq-7000 ZC702 Evaluation Kit, the Xilinx Zyqn-7000 EPP Video Kit, and 

the Zynq-7000 EPP ZedBoard.  [27] 

2.3.2   Xilinx Zynq-7000 Evaluation Kit 
 
The Xilinx Zynq-7000 ZC702 Evaluation Kit is a kit from Xilinx that includes a silicon board 

with the Zynq EPP, development tools, IP, and a variety of reference designs. An image of the 

board is shown in Figure 7. It provides abundant I/O expandability for embedded designers to 

develop upon. It is also backed with OS support and by the ARM community. The kit is provided 

with the XC7Z020-1CLG484CES device Zynq chip, design suites, various cables for scoping the 
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board, 8 GB SD card that contains the provided Linux startup kernel, and documentation with 

step-by-step guides. It also contains all schematics and PCB files and design examples. [28] 

 

Figure 7: Zynq 7000 Evaluation Kit [28] 

2.3.3   ZedBoard 
 
The ZedBoard is a community driven approach of the Zynq EPP by Silica and Digilent. An image 

of the board is shown in Figure 8. The concept behind the board is to be designed in an open 

source community manner. The board contains various peripherals with extension options that 

include a FPGA Mezzanine Card and peripheral modules using the Peripheral Module (Pmod) 

connector to connect components such as an ADC, DAC, Sensors, Switches, Displays, RF, WiFi, 

Bluetooth, or Storage. The ZebBoard website, ZedBoard.org, is where all the collaboration 

material is maintained. [29]  
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Figure 8: ZedBoard [30] 

2.4   Real-Time Operating Systems 
 
An OS is an abstraction of hardware in a system that provides an interface for servicing 

applications. The OS replaces the direct interface to hardware with program functionalities a user 

of the system wants or needs.  It supports the basic functions of a computer system and makes the 

system easier to maintain, faster, and easier to write applications. When designing an OS various 

parameters are considered including performance, resources management, security, marketability, 

and failure tolerance. It is responsible for managing hardware and software resources. Hardware 

resources include processors, memory, and I/O devices. Software resources include programs and 

data files.  

An OS is comprised of layers that create an environment that hides and simplifies the underlying 

hardware by providing sets of commands to meet the user's needs. Though the structure of the OS 

kernel can vary, they all attempt to provide the user with a platform in which to utilize the system 

hardware. Many OSs make multiple programs and processes appear to run at the same time 

through multitasking. However, a processor can only handle one thread of execution at a time. A 
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scheduler is used to manage the processes executing on the processor and to create the illusion of 

simultaneous execution through a process call time slicing and rapidly switching between 

program threads. [31] 

The type of OS can be defined by its scheduler and how it decides which process threads to run 

and for how long. A multi user OS, like Unix, will ensure processing time is shared equally 

between users. A desktop type OS, like Windows, has a scheduler that ensures that the system 

remains responsive to users when needed. A RTOS's scheduler is designed to provide predictable 

execution patterns to systems that have real time requirements. Embedded systems often have 

these demands and means the system must respond to a given event within a strictly defined 

deadline. This means that the OS's scheduler must be deterministic in order to predict the real 

time requirements of the system.  [32] 

FreeRTOS uses a traditional real time scheduler by allowing the user to assign a priority to each 

thread to determine execution. This scheduler, based on the priority, knows which thread of 

execution to run next. FreeRTOS is a versatile class of RTOS designed for many applications 

including being implemented on small microcontrollers. FreeRTOS is designed for systems that 

do not require a full RTOS implementation, many times in the design of embedded applications, 

or do not have the ability to run a full RTOS. FreeRTOS only provides the core real time 

scheduling functionality, inter-task communication, and timing and synchronization primitives 

and would more accurately be referred to as a real time kernel. If additional functionality is 

required, they can be included as add-on components. [33]  

2.5   FreeRTOS  
 
FreeRTOS is a RTOS from Real Time Engineers Ltd written in C and, as of October 2011, 

supports 31 processor architectures. FreeRTOS is a lightweight real-time kernel designed for 

small embedded systems that require deterministic and real-time responsiveness to system events. 
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Lightweight means it is a less complex OS with a basic instruction set designed to be faster and 

not as heavily resource dependent.  Key features of FreeRTOS include an Application 

Programming Interface (API), message passing, binary and counting semaphores, mutual 

exclusion with priority inheritance, pre-emptive scheduling, co-operative scheduling, and round 

robin with time slicing. Round robin is a simple scheduling algorithm for process time slicing in 

which each process is assigned equal portions of execution time and in circular order. [33] 

With the growing complexity in embedded design due to the availability of more memory and 

various communication peripherals, there is an inherent increase in software complexity. The 

inherent benefit of using an OS kernel is clear. FreeRTOS is free and is released to its users as 

open source. FreeRTOS implements its open source by releasing moderated versions instead of 

pure open source. This ensures that only software originated by FreeRTOS is used in the official 

release. There are, however, community contributed files that are separate and available as open 

source. FreeRTOS's license model is designed around the idea that code on the application side 

that uses FreeRTOS remains closed, while code that modifies or extends the kernel itself is open 

source. [34]      

FreeRTOS supports several Xilinx products including Microblaze, PowerPC, and the Zynq. 

Microblaze, which is a 32-bit soft processor core port, runs on various Xilinx FPGA's including 

the Spartan-6 and Virtex5. PowerPC 405/440 are configurable processor cores that run on Virtex4 

and Virtex5 FPGA's repetitively. The initial release of the FreeRTOS is available for the Zynq in 

October 2011. The original port was for the Xilinx Zynq EPP and was developed to run on the 

Zynq 7000 EPP based ZC702 board and implemented on version 14.1 of the Xilinx ISE Design 

Suite. As Xilinx releases newer versions of their design suites, the ports are updated and released 

accordingly. [35]  
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2.6   Rhealstone: Real-Time Benchmark  

The Rhealstone Benchmark was proposed by Rabindra P. Kar and Kent Porter in 1989 and was 

designed to be a metric for comparing the performance of real-time multitasking systems 

independent of any features found in any CPU, bus architecture, or a specific OS or kernel. [36] 

At that time, there was the Whetstones and Dhrystones that benchmarked code generated by 

compilers and the throughput of hardware platforms, but no equivalent measurement for real-time 

systems. Rhealstone was a proposed standard for objectively measuring real-time performance 

and summarizing the components of performance.  

The Rhealstone metric mainly helps embedded developers select real-time systems appropriate 

for a specific application. It should be noted that an encompassing real-time solution would 

consist of the system, the application software, and external devices, so Rhealstones doesn't 

measure the quality of the complete solution, but instead a measurement targeted specifically 

toward a multitasking solution. The scope of Rhealstones is with complex systems running five to 

thirty concurrent processes. It will be adopted to be used with a multitasking AMP system. 

The Rhealstone takes into account that all real-time applications are unique. One system may be 

highly interrupt-driven while another relies heavily on message-passing among tasks or another 

that fights for resources. The Rhealstone figure is a sum obtained from six categories of activity 

most crucial to the performance of real-time systems. The categories include task switching, 

preemption, interrupt latency time, semaphore shuffling, deadlock breaking, and intertask 

message latency time. It uses coefficients that the system designer assigns weight to each 

Rhealstone component based on relative importance.  
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2.6.1   Task Switching Time 

Task switching time is the average time the system takes to switch between two independent and 

active, not suspended or sleeping, tasks of equal priority. Task switching is synchronous and 

nonpreemptive and is an important measure of any multitasking system. This metric is influenced 

by the host CPU's architecture, instruction set, and features and is designed to assess the 

compactness of task control data structures and the efficiency with which the executive 

manipulates the data structures in saving and restoring contexts. Task switching time, 

additionally, measures the executive's list management capabilities. [36] A demonstration of this 

performance parameter is shown in Figure 9. 

 

Figure 9: Rhealstone Benchmarking: Task-Switching Time [37] 

2.6.2   Preemption Time 

Preemption time is the average time it takes a higher-priority task to take control of the system 

from a running task of lower priority and usually occurs when the higher-priority task moves 

from an idle to a ready state in response to some external event. In other words, it is the average 

time the executive takes to recognize an external event and switch control of the system from a 

running task of lower priority to an idle task of higher priority. A demonstration of preemption 

time is shown in Figure 10. Preemption and interrupt latency, which is discussed next, can be 
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considered most significant real-time performance parameter since multitasking systems assign 

task priorities and even dynamically through applications. [36]  

 

Figure 10: Rhealstone Benchmarking: Preemption Time [37] 

2.6.3   Interrupt Latency 

Interrupt latency, shown in Figure 11, is the time between the CPU's receipt of an interrupt 

request and the execution of the first instruction in the interrupt service routine. Its reflected by 

the delay introduced by an executive and the processor and not delays occurring on the bus or 

interfaces to external devices. [36] 

 

Figure 11: Rhealstone Benchmarking: Interrupt Latency [37] 
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2.6.4   Semaphore Shuffling Time 

Semaphore shuffling time is the delay between a task's release of a semaphore and the activation 

of another task blocked on the "wait semaphore" primitive. When implementing this, at least 

three tasks with different priorities should be active and no other tasks should be scheduled in 

between. The semaphore shuffling time measures the overhead associated with mutual exclusion. 

This occurs when multiple tasks compete for the same resources. Semaphore based mutual 

exclusion provides a way of ensuring that a nonshareable resource only serves one master at a 

time. [36] Semaphore shuffling time is shown in Figure 12. 

 

Figure 12: Rhealstone Benchmarking: Semaphore-Shuffle Time [37] 

 

2.6.5   Deadlock Breaking Time 

Deadlock breaking occurs when a higher-priority task preempts a lower-priority task that holds a 

resource needed by the higher-priority task and the metric measures the average time it takes the 

executive to resolve this conflict. Deadlocks are a common multitasking problem and are 

sometime not handled effectively. This can be solved by temporarily raising the priority of the 

running task above that of the interrupting task until the needed resource is released by the lower-

priority task. The temporary priority is then lowered so the new task can run. Deadlock breaking, 
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shown in Figure 13, is the sum of times required to resolve an ownership dispute between a low-

priority task holding a resource and a higher-priority task that needs it. [36]  

 

Figure 13: Rhealstone Benchmarking: Deadlock-Break Time [37] 

2.6.6   Intertask Messaging Latency 

Intertask message latency, demonstrated in Figure 14, is the delay within the executive when a 

nonzero-length data message is sent from one task to another. In order to measure it properly, the 

sending task should stop executing immediately after sending the message and the receiving task 

should be suspended while waiting for it.  

 

Figure 14: Rhealstone Benchmarking: Intertask Message Latency [37] 
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The intertask message-passing link must be established at run time and if multiple messages are 

sent on the same link, the receiving task gets a chance to read an old message before the sending 

task can overwrite it with a new one. This can be handled with various mechanisms such as pipes, 

queues, and stream files which are usually provided by multitasking executives for intertask data 

communication. [36]  

2.6.7   Calculating the Rhealstone Performance Number  

The measurement of the six performance categories provide embedded designers with a well 

rounded analysis of the system performance. Rhealstone also makes it easy to compare systems 

by generating a single real-time value. All of the benchmarks must be first represented in seconds 

(t1-t6). Then, added together and the average of them found. The number is then inverted to get 

the Rhealstone performance number that is represented with the units Rhealstones/second as 

shown in Equation 2.1. [37] 

��������	� �������	�� ������ � ���1��2��3��4��5��6�
6 �

�1
��������	��/!��      (2.1) 

The above performance number is a method to compare systems on a general level by 

considering all the parameters to be equally occurring. If an embedded designer needs to evaluate 

a system based on a specific category, for example, an application that is heavily interrupt-driven 

a weight can be chosen before calculating the performance number. This method is referred to as 

“application specific Rhealstone” and is shown as Equation 2.2. [37] 
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Nonnegative real coefficients (n1-n6) for each category are set based on occurrence within the 

application. If interrupts occur 5 times more than task switching, its coefficient should be 5 times 

larger. Similarly, if a category does not happen at all, the coefficient is set to zero. For example, if 
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there is no inter-task message passing performed by the application, its coefficient should be set 

to zero. The application specific Rhealstone Performance Number is then again calculated by 

inverting the average. [37] 
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CHAPTER 3 

DESIGN TOOLS 

3.1   Introduction 
 
Complex embedded systems require powerful and well developed design tools. With an 

embedded system such as the Zynq EPP, embedded engineers are faced with complex design 

projects that have both hardware and software design problems. Using an FPGA in the design 

makes the system even more complicated and combining each individually designed subsystem 

into one complete system is again a difficult task. With the Zynq EPP and the addition of the 

ARM dual core as Hard IP, Xilinx has developed a set of design tools that manage this 

complexity and help make the design process as simple as possible. The broad array of 

development system tools provided by Xilinx is collectively called the ISE Design Suite. The 

Xilinx ISE Design Suite 14 is the current version used for designing on the Zynq-7000 All 

Programmable SoC platform. [39]  

3.2   Xilinx ISE 14 
 
The Xilinx ISE Design Suite is the current development tool set used to design every aspect of 

the Zynq-7000 All Programmable SoC. There are currently three editions, the Logic, Embedded, 

and DSP, of the ISE Design Suite and are all included as part of the System edition. [40] The 

Xilinx ISE Design Suite 14.2 Embedded Edition was used for development on the Xilinx ZC702 

Rev C Evaluation Board for this thesis. Xilinx Vivado is the next generation of this design suite 

and will be replacing the Xilinx ISE for future Xilinx products. The first generation of Vivado did 

not support the Zynq EPP, but will support it in the future. 

The Embedded Edition of the ISE Design Suite includes the PlanAhead design analysis tool, 

ChipScope Pro, and the Embedded Development Kit (EDK). The EDK consists of the Xilinx 
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Platform Studio (XPS) and the Software Development Kit (SDK). [39] Aside from the ISE, Tera 

Term was also used for the design process. Figure 15 depicts the block diagram for the software 

packages within the ISE Design Suite and how they interact with each other. PlanAhead is the 

initial development tool for starting an embedded design. Planahead works with the EDK to 

design the hardware and software system.  

 

Figure 15: Design Tools Block Diagram – Xilinx ISE 14 

3.3   PlanAhead 
 
The PlanAhead design and analysis tool is used to add various hardware sources and manage the 

link between the hardware and software design aspects of the project. It helps with FPGA I/O 

assignments and advanced FPGA layout planning to optimize the connectivity between the PCB 

and FGPA. [40] PlanAhead allows the embedded designer to create a project with an embedded 

processor system as the top level and works with the EDK to design the embedded system.  The 

hardware system is created using XPS and imported back into the PlanAhead project. The 
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PlanAhead project is then exported to the SDK to develop software for the hardware design that 

was just created.  

When PlanAhead executes, it allows the embedded designer to create a new project or open an 

existing one. A Register Transfer Level (RTL) project is created to begin the design in 

PlanAhead. The RTL Project allows the embedded designer to add sources, generate IP, and run 

an RTL analysis. The designer starts by setting up the type of hardware board the project is being 

design for. For this thesis, the Zynq ZC702 Evaluation Board was selected. PlanAhead is then 

used to import various sources into the project. It can add constraints such as a User Constraint 

Files (UCF) which specifies how the logical design constraints are implemented on the target 

device [54], add design sources such as the HDL Verilog, or an Embedded Source for setting up 

the PS peripherals and various other settings. PlanAhead also generates the bitstream’s bit file for 

programming the PL in the SDK. [51] Figure 16 shows how the project files of PlanAhead 

interact with the rest of the ISE Design tools. 

 

Figure 16: Design Tools Block Diagram – PlanAhead 
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When an embedded source is added to the project, it recognizes that an embedded processor 

system was created and starts XPS to setup the added source. When the designer is finished with 

XPS, the design is updated in the PlanAhead tool.  From here the embedded processor system can 

be created as the top level of the system by creating a Top HDL with Verilog. The entire project 

is then exported to the SDK. [39]  

3.4   Embedded Design Kit 
 
The EDK is used to design a complete embedded processor system for implementation on a 

Xilinx hardware device. It assists designers in hardware and software application design, 

debugging, and execution. The design can be run on the destination boards for verification of a 

working design. The EDK includes hardware IP, drivers and libraries, and GNU compiler and 

debugger for C/C++ software development for the ARM Cortex-A9MP processors in the Zynq 

PS. It also provides documentation and sample tutorial projects for understanding the basics. [39] 

The tool kits included in the EDK are the XPS and SDK. Within these two kits are various tools 

including the Base System Builder (BSB) Wizard, Xilinx Microprocessor Debugger (XMD) and 

GNU Software Debugging Tools, Simulation Model Generation Tool (SimGen), Create and 

Import Peripheral Wizard, GNU Software Development Tools, Library Generation Tool 

(LibGen), Bitstream Initializer (BitInit), and the Hardware Platform Generation Tool (PlatGen). 

[40]  

3.5   Xilinx Platform Studio 
 
XPS provides a development environment for designing the embedded PS’s hardware. XPS is 

primarily used for setting up the processor, peripheral, and interconnection configurations for the 

embedded processor hardware system. It’s designed to make it easy to add desired IPs and create 

port connections for components like the clock and reset. The XPS project can be designed from 

the ground up using a blank project or the BSB wizard can be used to add default peripherals to 
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the fabric and to automatically select a default configuration for the PS I/O interface. After the 

BSB is used, the Zynq EPP PS block diagram is displayed in XPS. This allows the designer to 

click on any of the configurable green blocks and make configuration changes. The configuration 

process of XPS is shown in Figure 17. 

 

Figure 17: Design Tools Block Diagram – XPS 

XPS creates hardware platform information in the Xilinx Microprocessor Project (XMP) file 

format. [51] This file includes information about the PS configurations including GPIO such as 

MIO and Extended MIO (EMIO), and adds IP and information about configuring the PL in 

PlanAhead. Closing XPS will update the currently open PlanAhead session. 

3.5.1   Base System Builder Wizard 
 
The BSB wizard is part of the XPS and prompts the designer to choose whether they want 

assistants in setting up the basic configurations of PS. The BSB helps create a working embedded 

design for the evaluation board quickly by setting up basic features and common functionality 
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automatically. After setting up the basics of the system, XPS and other ISE software tools can be 

used to perform system customization. The first aspect of the design the BSB wizard sets up is 

what type of interface is going to be used whether it be AXI or Processor Local Bus (PLB) which 

is an old interface standard used by Xilinx. The BSB then needs to know what type of board the 

system is being design for. Fortunately, this information was imported from PlanAhead and if it 

wasn’t the correct board setup can be selected. [39] The BSB closes and now allows the designer 

to customize the existing design. 

3.5.2   AXI Interconnection 
 
The AXI bus interface IP cores started being used by Xilinx with their Spartan-6 and Virtex-6 

hardware devices. An AXI system interface comes with standard Xilinx IP and tool flows and 

will be the standard interface used for all current and future versions of Xilinx products. The PLB 

system is a legacy bus standard used by Xilinx FPGA families up to the Spartan 6 and Virtex 6 

and is not supporting newer FPGA families. This means it is not suggested to start new projects 

with PLB if they will be used on new Xilinx platforms. [43] The AXI specification is in charge of 

providing a framework for defining protocols for moving data between IP. It does this using a 

defined signaling standard. The AXI standard is responsible for making sure that IP can exchange 

data is moved across a system properly. [42] The AXI and other IP can be added to the PS design 

to create a custom embedded system.  

3.5.3   Hardware Platform Configuration 
 
The Zynq’s PS can be configured in various ways. When the BSB is finished setting up the basic 

system, the designer is provided with the Zynq EPP processing platform configuration tab shown 

in Figure 18. This tab allows the designer to configure I/O peripherals, clocks, memory, and other 

aspects of the PS. The green blocks are customizable portions of the PS.  
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Figure 18: Processing Platform Peripheral Configuration – XPS 

Various IP can be added to the PS using the bus interface tab. Once the peripherals are added to 

the system, the ports tab is used to setup the I/O peripherals and clocks. There are 54 MIO that 

can be used by the PS. If more I/O is required or the designer wants to utilize the PL, the I/O can 

be setup as EMIO for use by FPGA fabric. [53] Once the PS is configured, XPS is exited and the 

design is updated in PlanAhead and ready to be exported to the SDK. 

3.6   Software Development Kit 
 
The SDK is used for developing the software design for the embedded project. The SDK is used 

for C/C++ embedded software application creation and verification of software application 

projects and was built on the Eclipse open-source standard framework. [40] The SDK provides 

tools for software project management and gives access to the GNU toolchain for code 

compilation and debugging. It can be used to run applications on the target hardware board and 
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create bootable images. The FPGA fabric can also be programmed when needed. Figure 19 shows 

the relationship between the files within the SDK. 

 

Figure 19 Design Tools Block Diagram – SDK 

The PlanAhead design tool exports the hardware platform specification files from XPS to the 

SDK. These files include the XML, Microprocessor Hardware Specification (MHS), and the 

ps7_init.c, ps7_init.h, ps7_init.tcl, and ps7_init.html files. The XML file is the main file used for 

setting up the First Stage Boot Loader (FSBL) and Board Support Package (BSP). The MHS file 

contains information about the interconnects between the PS and PL. Ps7_init.c, ps7_init.h, 

ps7_init.tcl, and ps7_init.html files are internal configuration files containing information on the 

Zynq EPP peripheral configurations. The ps7_init.c and ps7_init.h files contain settings for DDR, 

clocks, plls, and MIOs to initialize the Zynq EPP PS. The SDK uses these specified settings so 

that applications can be run on top of the PS. It should be noted that here are some settings of the 

PS that are fixed for the ZC702 evaluation board and cannot be changed. [44]  
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3.6.1   Board Support Package 
 
A BSP is created using the SDK from the files imported from PlanAhead. The BSP is the support 

code for a board or hardware platform which helps with initialization during power up as well as 

provides support for software applications to run on top of. The BSP is usually specific to the OS 

and one is needed for each of the cores of the processor. [39] It is a collection of libraries and 

support drivers that form the application’s lowest layer of the software stack. A BSP must be 

created before a designer can create or use a software application by linking against it or running 

on top of the software platform. It does this by using the API that the BSP provides. [47] Multiple 

BSPs can be used in the same SDK workspace.  

3.6.2   Xilinx C Project 
 
The SDK allows for application development of C/C++ programs. For this thesis, the C 

programming language was used. The C program can be compiled with the SDK and an 

Executable and Linakable Format (ELF) file is generated. This file is used to execute on the 

processor.  The SDK provides a basic Hello world example to understand the basic of 

programming the PS. The ELF file is also used in creating a bootable image for running on the 

hardware device. All application development for this thesis was done in C. 

3.6.3   First Stage Boot Loader 

The FSBL starts after the device boots and is loaded into the OCM. It is responsible for 

initializing the PS configuration exported from XPS. The FSBL always runs on CPU0 and is the 

first software application that is executed. It is used to initialize peripherals, programming the PL, 

load a second stage bootloader, or load the application ELF file. The version of FSBL included in 

the ISE Design Suite does not support multiple data or ELF file. This is because the FSBL 

searches for a bit file. If a bit file is found, the FSBL writes it to the PL. The FSBL then loads one 

application ELF file into memory and executes it. If AMP is desired, the FSBL must be modified 

so it continues to search for files. [52] The FSBL’s ELF file can be stitched with the bitstream to 
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create a Boot Image File (BIF) using the Bootgen application. The create boot image wizard in 

SDK creates a bootable image that can be flashed to the board. [51]  

3.6.4   Program FPGA 
 
When the FPGA fabric and peripherals are utilized on the Zynq evaluation board, a Bitstream 

BIT file is generated in PlanAhead using the bitstream generator. The bitstream is used to 

configure the custom design logic in the PL by downloading the system.bit file to the FPGA 

within the SDK. When only the PS is required, the Bitstream is not needed and can be omitted. 

[44] The FPGA must be programmed anytime EMIO is used. An example would be when using 

the Pmod2 connector on the Zynq Evaluation Board. 

3.6.5   XMD Console 
 
The XMD console is useful for running and debugging an embedded design application. It can be 

used for debugging and verifying the system for the Dual ARM Cortex-A9 MPCore processor 

running on the hardware board and is accessed from the XPS or SDK. The hardware board is 

debugged using a cycle-accurate Instruction Set Simulator (ISS). XMD provides a Tool 

Command Language (TCL) interface that is used for command line control and debugging of the 

target board. Additionally, it can be used to test a complete system by running verification test 

scripts.  

Debugging control of the target board in XMD can be done from the supported GNU Debugger 

(GDB) remote TCP or JTAG.  XMD is used to download the FSBL to the evaluation board and 

the application’s ELF file. The “connect arm hw” command allows the SDK to connect to the 

ARM processor on the hardware board. The ELF file can be downloaded to the processor using 

the “dow” command. It can be ran and stop using the commands “con” and “stop” respectively. 

When downloading a different ELF file, use “rst –processor” to reset the processor. [44] 
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3.7   ChipScope Pro 
 
ChipScope Pro is useful for on-chip debugging of FPGA designs and assists with in-circuit 

verification. ChipScope Pro’s tools and IP cores provide embedded designers with a practical 

ways to test FPGA devices. These tools integrate measurement hardware components with Xilinx 

target boards for testing. The components communicate with the tools and provide the embedded 

designer with logic analyzing capabilities. The ChipScope Pro Serial I/O Toolkit, for example, 

explores and debugs high-speed serial transceiver I/O designs on FPGAs. The Internal Bit Error 

Ratio Tester core and associated software provides and perform bit error ratio analysis on high-

speed serial transceivers channels implemented on the FPGA. [50] 

3.8   Tera Term 
 
A serial communication utility is needed to transmit and receive information of the ZC702 

Evaluation Board. The SDK has a built in serial terminal utility available to the embedded design. 

This utility functions well, but there are also various other terminal utilities that designers tend to 

prefer. Tera Term is a free open-source terminal emulator and was used for the embedded designs 

for this thesis. [41] The terminal is connected from the Host PC to the UART port of ZC702 

Evaluation Board using a USB Type-A to USB Mini-B cable. The standard configuration used 

for Zynq PS was a Baud rate of 115200, 8 bits, no parity, a stop equal to1 bit and no flow control. 

[39]  
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CHAPTER 4 

ZYNQ EPP OPERATING SYSTEMS 

4.1   Introduction 
 
Selecting the optimal OS for embedded applications is key in designing the system. It important 

to understand the system’s design requirements when choosing the OS as it will affect how 

applications can be developed and ran. There are a variety of OS able run on the Zc702 

Evaluation Board. There are three platforms this thesis is concerned which include Bare-Metal, 

Xilinx’s Linux kernel, and FreeRTOS. The Standalone “Bare-metal” software system provides 

low level control that is included with the Xilinx ISE Design Suite.  

Though Bare-Metal provides low level control, it is not technically an OS, but for all intended 

purposes it still can run on one or both of the ARM cores and process much like any other OS. A 

bootable image of Xilinx’s Linux kernel comes prepackaged with the evaluation kit and is 

discussed briefly. Finally, FreeRTOS is a well known free RTOS that provides constantly 

updated ports that run on the Zynq EPP. Since the Zynq-7000 SoC has a dual ARM processor, a 

decision must be made when utilizing both cores on whether to use SMP or AMP and which 

OS(s) will be used for each of the cores. AMP with Bare-Metal on one core and Linux [46] or 

FreeRTOS on the other or FreeRTOS on both cores are a few examples. [51] This thesis focuses 

specifically on multitasking FreeRTOS on a single core, but will discuss the other available OS 

for context. 

4.2   Bare-Metal 
 
Bare-Metal is a simple, low-level software layer included in the Xilinx SDK. It provides 

processor features including caches, interrupts, and exceptions in a single threaded manner. The 

OS provides basic I/O, profiling, abort, and exit features. A basic C program application can be 
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run on top of the Bare-Metal OS. [39] Bare-metal is used on a software system that typically does 

not require many features that are normally provided by an actual OS. There are trade-offs 

between having a simple software system over an OS. An OS requires some processor throughput 

and tends to be less deterministic than that of a simple software system, but the simple system 

might not be able to handle the overhead or lack determinism. In today’s embedded processing 

design, processing speeds allow an OS to run with negligible overhead though some system 

designers avoid an OS due to their complexity. [51] 

4.3   Linux 
 
As an addition to the Bare-metal OS, Xilinx provides software design tools for the development 

of Linux applications. The Zynq EPP evaluation board comes with a pre-installed Linux kernel 

that is monitored by Xilinx and is specifically designed to run on the Zynq EPP. Additionally, 

there are various vendors that provide Linux distributions. Linux is a popular OS among the Zynq 

community. Many embedded designers use Linux because it is regarded as a protected full-

featured OS that takes advantage of the MMU in the processor and provides SMP capabilities to 

utilize multiple processors. Xilinx provides drivers for the peripherals in the PS and additional 

drivers can be added for custom logic in the PL.  

Linux can boot in multiple ways including from a boot image into flash during power up or 

resetting the board, downloading and running the FSBL which is followed by U-Boot and then 

the Linux Kernel, or using U-Boot to load and run images. U-Boot is an open source bootloader 

used by Xilinx and the Linux community. Linux isn’t a RTOS, but does have some real-time 

characteristics. [51] Designers that require a RTOS will find FreeRTOS to be an applicable 

solution. 
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4.3   FreeRTOS 
 
The FreeRTOS port for the Zynq EPP is available from the FreeRTOS website. It is based on 

version 7.0.2 of FreeRTOS and should be noted that it is not supported by Xilinx Technical 

Support. It was tested to run with the default Zynq ZC702 system, a CPU frequency of 667 MHz, 

and in JTAG boot mode. It utilizes SCUTIMER, which runs at half the CPU frequency, for 

generating tick interrupts. The UART is used for displaying messages on a console terminal such 

as Tera Term. The FreeRTOS port extends the Bare-Metal’s Standalone BSP to recognize and 

include FreeRTOS source files. Some demo applications are included with the port including 

applications for printing Hello World to the terminal as well as blinking LEDs using semaphores 

and mutexs. This port utilizes all the standard FreeRTOS functions available and was used as the 

basis for all of the work in this thesis. [56] 
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CHAPTER 5 

UTILIZING THE ZYNQ EPP HARDWARE 

5.1   Introduction 
 
It is important to understand how to develop an embedded system with the Zynq EPP and the 

various options it makes available to the designer. The evaluation board has several boot options 

and can boot from a bootable image on an SD card, boot in Quad SPI mode, or with JTAG using 

a Xilinx Platform Cable. Additional IP in not required to utilize the Zynq PS, but if peripherals 

that used the PL are, it can be attached by adding IPs in the fabric. This PS + PL combination 

allows an embedded designer to achieve complex, but efficient designs of a single SoC. 

Additional hardware components can be attached to the hardware board including a Pmod 

connection. [51] 

5.2   Booting 

The Zynq EPP can be configured to boot in secure mode using static memories only, which is 

JTAG disabled, or in non-secure mode using static memories or JTAG. JTAG mode is primarily 

used for development and debugging. Other booting options include NAND, parallel NOR, Serial 

NOR, also known as Quad-SPI, or SD flash memory. There are three boot stages the Zynq can go 

through.  Stage-0 boot know as BootROM, followed by the FSBL, and then optionally a Second 

Stage Bootloader. [51] The JTAG boot mode was used for the entirety of this thesis. In order to 

use JTAG for programming and debugging, the board either needs a Xilinx Platform Cable or a 

Digilent Cable. This thesis used the Xilinx Platform Cable II. If the designer decides to boot from 

SD, an 8 GB SD card is included to store bootable images for the evaluation to boot in SD mode. 
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5.3   Pmod Connection 
 
All of the projects of this thesis targeted the Zynq ZC702 Rev C evaluation board. The evaluation 

board requires several additional hardware components to function. The board gets its power 

from an AC power adapter that provides 12 VDC. The board communicates with the host pc 

using a USB Type-A to USB Mini-B cable. Pmod connectors were used to attach an external 

Pmod module. When performing benchmarking, all signals were sent through the Pmod2 port of 

the Zynq EPP evaluation board and measured. In order to do this, a Digilent 6-pin Test Point 

header Pmod module was used that provides connections for probing. [49]  

The signals sent to the Pmod2 port were measured using a DigiView Tech Tool Logic Analyzer 

model DV1-100. It is a 100 MHz, 18 Channel, analyzer that connects to the host terminal through 

a USB 1.0 to USB 2.0 cable. [55] Signals are monitored using the provided software tool from 

DigiView. [48] All benchmarking data was recorded using this tool. 
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CHAPTER 6 

RESULTS  

6.1   Introduction 
 
Implementing FreeRTOS on the Zynq EPP required an in-depth understanding of the design tools 

and hardware. The work in this thesis discusses the timeline of development on the Zynq 

evaluation board. Understanding the basic development tools and hardware began by following 

the basic tutorials provided with the evaluation kit. [39] It reviews the software design tool basics 

and implements the infamous “Hello World” program that prints the message to a terminal. There 

is a strong Zynq EPP community being develop, more specifically for the Zedboard, which is an 

available resource for beginning designers. Designer blogs, including the Zynq Geek blog, have 

been supported by Zedboard.org and have their own spot on the community website. [45]  

6.2   Bare-Metal - Single Core 
 
Bare-Metal is included with the Xilinx ISE Design Suite and is supported by several tutorials 

from Xilinx. It provides a basis for understanding basic C program development on the Zynq 

EPP. It works with the default hardware setup and is strongly supported by Xilinx. Implementing 

“Hello World” is the start for embedded designers. From here, designers can begin to talk to 

various built in peripherals including switches and LEDs. The first step is to design with only the 

PS and using AXI GPIO MIO. This does not require the designer to program the FPGA fabric. 

This allows the designer to control LEDs and communicate with the UART, and various other 

AXI interconnects.  

Once an understanding is of the PS has been developed, the EMIO can be used. This AXI 

interconnect utilize the PL and requires the FPGA to be programmed at the most basic level. The 

PL at the most basic level acts like a wire and passes signals. This allows for the use of GPIO 
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such as the PMO2 connector on the evaluation board. The PL can also eventually be used in more 

advanced ways than simply passing signals, but will not be addressed in this thesis. A basic 

example of this is controlling the LEDs using a PWM signal which is sent to the PL as a duty 

cycle from the PS. [53] 

6.3   FreeRTOS - Multitasking Single Core 
 
A strong basic understanding of the Zynq EPP is needed to implement more advanced designs. 

The concepts utilized with Bare-Metal carry over for work with FreeRTOS. The port provided for 

FreeRTOS to run on the Zynq EPP provides basic instructions to implement the OS on a single 

core of the hardware. [56] It contains basic example applications including printing “Hello 

World” with tasks and blinking LEDs with semaphores and mutexes. With these basic examples 

and FreeRTOS manuals, [57] more advanced applications can be developed. Similarly, as with 

Bare-Metal, C programs can be developed to utilize the AXI GPIO MIO interconnects. Again, 

this just requires just the PS and no PL needs to be programmed.  

The PL and the EMIO can be utilized by programming the FPGA fabric. Again, it can used as a 

basic wire or can eventually be programmed for more advanced system development. There is 

currently a known problem with FreeRTOS where if the PL is programmed, there are problems 

with libraries in the SDK and the designer must manually modify them. [56] The Pmod2 was 

used to perform the benchmarking and required programming the PL due to it being an EMIO 

interconnect on the evaluation board. 

6.4   Benchmarking 
 
The benchmarking for FreeRTOS followed the source code from the Rhealstone Benchmarking 

done for the iRMX RTOS with minor modifications to work with the new OS. [37] Each 

benchmark starts by outputting a HIGH single to the Pmod2 port and is measured with the 

DigiView Logic Analyzer. When the benchmark is finished, it sets the Pmod2 signal low. The 
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time the signal remained HIGH was used as the total execution time of each benchmark. The 

DigiView Logic Analyzer has a resolution of 10 nsec so the benchmarks utilize sample 

interpolation to produce a finer measurement. [55] As stated previously, the CPU operates at 633 

MHz for FreeRTOS, which results in a period of 1.6 nsec. Each of the benchmarks perform are 

discussed in detail and the source code is provided in the Appendices.  

6.4.1   FreeRTOS Task-Switching Time 

The Task-Switching benchmarking sets up two tasks with equal priority. The tasks switch back 

and forth between the processor and repeats for 50000 iterations. To first determine the time it 

takes to perform the for loop “work”, the benchmark just measures the loops performing no work 

and not task switching. This is shown in Code Listing 1. 

 
Code Listing 1: Benchmark without Task-Switching Time 

The MAX_LOOPS_SERIAL is the total number of iterations for the benchmark. This code does 

not actually create tasks and simply determines the execution time of the portions of the code that 

are not part of the Task-Switching measurement. The execution of this code segment is recorded 

with the Digiview software and the second portion of the code runs. The second portion utilizes 

two tasks. This time the two tasks perform task switching for the desired number of iterations. 

This is shown in Code Listing 2.  

The prvFirst and prvSecond are the two tasks respectively and each perform their own “work” 

loops for the number of iteration specified by MAX_LOOPS_TASK_SWITCHING which for 

this benchmark was 500,000. The Task-Switching is performed by the taskYIELD(); command. 

    for (count1 = 0; count1 < MAX_LOOPS_SERIAL; count1++) 
     { 
  // Do Nothing 
     } 
   for (count2 = 0; count2 < MAX_LOOPS_SERIAL; count2++) 
     { 
  // Do Nothing 
     } 
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When the tasks are finished, the vTaskDelete(); is used to delete the task and the xHandle 

variable points to the desired task. In this case each task deletes itself.  

 
Code Listing 2: Task-Switching Time 

The Task-Switching value is important for the other benchmarks. Since most of the other 

benchmarks require Task-Switching as part of the other benchmarks, the value calculated in this 

section can be used to negate the extra time measured for the other benchmarks inflated by Task-

Switching. 

6.4.2   FreeRTOS Preemption Time 

The Preemption benchmarks works by creating two tasks. Task 2 has a higher priority and delays 

for one tick interrupt. While it’s sleeping, Task 1 runs. Task 1 gets preempted when Task 2 wakes 

and Task 2 runs again, but immediate delays. This repeats for 15000 iterations. The benchmark 

first accounts for the processing time required by the for loops that do “work” as shown in Code 

Listing 3.  

static void prvFirst( void *pvParameters ) //Task 1 
{ 
 for( ;; ) 
 { 
  for (count1 = 0; count1 < MAX_LOOPS_TASK_SWITCHING; count1++) 
  { 
   taskYIELD(); 
  } 
  vTaskDelete(xHandleFirst);  // Delete Task 1 
 } 
} 
 
static void prvSecond( void *pvParameters ) //Task 2 
{ 
 for( ;; ) 
 { 
  for (count2 = 0; count2 < MAX_LOOPS_TASK_SWITCHING; count2++) 
  { 
   taskYIELD(); 
  } 
  vTaskDelete(xHandleSecond);  // Delete Task 2 
 } 
}  
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Code Listing 3: Benchmark Time without Preemption 

MAX_LOOPS is equal to the benchmark iteration number. ONE_TICK_AVERAGE is the 

average amount of for loops that can be performed during one tick. Once the time for the for 

loops are determined, the two tasks are created and the benchmark measures the preemption time. 

Task 2 runs and immediately sleeps and Task 1 does “work” until it gets preempted by Task 2. 

This is demonstrated in Code Listing 4. 

 
Code Listing 4: Preemption Time 

static void prvFirst( void *pvParameters ) //Task 1 
{ 
 for( ;; ) 
 { 
  for (count1 = 0; count1 < MAX_LOOPS; count1++) 
  { 
   for (i = 0; i < ONE_TICK; i++) 
   { 
           // Do Nothing 
   } 
  } 
  vTaskDelete(xHandleFirst);  // Delete Task 1 
 } 
} 
 
static void prvSecond( void *pvParameters ) //Task 2 
{ 
 for( ;; ) 
 { 
  for (count2 = 0; count2 < MAX_LOOPS; count2++) 
  { 
   i = ONE_TICK; // Reset i because i never reaches ONE_TICK  
   vTaskDelay(1); // Delay a single tick 
  } 
  vTaskDelete(xHandleSecond);  // Delete Task 2 
 } 
}  

for (count1 = 0; count1 < MAX_LOOPS; count1++) 
     { 
    for (i = 0; i < ONE_TICK_AVERAGE; i++) 
   { 
             // Do Nothing 
   } 
     } 
   for (count2 = 0; count2 < MAX_LOOPS; count2++) 
     { 
    // Do Nothing 
     } 
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ONE_TICK is a slightly higher number than the number of for loops that can be performed 

during one tick. The vTaskDelay(); accepts the number of ticks the specific task should delay. 

While Task 2 delays, Task 1 can run but only until Task to wakes up from its delay. The two 

measurement times are subtracted from each other to determine the Preemption and Task 

switching time. The time determined for Task-Switching, which was determined from the first 

benchmark, is subtracted from the Preemption benchmark time to calculate the Preemption time 

itself.  

6.4.3   FreeRTOS Semaphore Shuffle Time 

This Semaphore Shuffle Time benchmark creates 2 tasks and a binary semaphore. Each task only 

has 2 capabilities. They can either take or give the semaphore and yield after either action. Task 1 

will start by taking the semaphore and then yield. Task 2 runs and also attempts to take the 

semaphore. It blocks because it cannot, and waits for the semaphore to be available. Task 1 runs 

and releases the semaphore and yields again. Task 2 now sees that Task 1 has released it and 

takes the semaphore and then yields. Task 1 now attempts to take the semaphore, cant because 

Task 2 has it, and therefore it blocks and waits for it to be available. Task 2 runs, releases the 

semaphore, and yields. The process repeats for the specified number of iterations. Code Listing 5 

shows Task 1 and Code Listing 6 shows Task 2.  

The benchmark needs to first be ran without the semaphore and then ran with it. The two 

execution times are subtracted from each other to determine the Semaphore Shuffle Time. Task 1 

and Task 2, when the sem_exe is set to zero, the semaphore is not used and the benchmark is ran 

to determine the execution time of each loop and task-switches. When sem_exe is set to one, the 

benchmark utilizes the semaphore.   
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Code Listing 5: Semaphore Shuffle Task 1 

The xSemaphoreTake(); command allows the task to take the semaphore if available and the 

xSemaphoreGive(); allows the task to give the semaphore. The xSemaphore is the handle for the 

binary semaphore that was created while portMAX_DELAY forces the task to wait indefinitely 

until the semaphore is available. After the tasks have run for the desired number of iterations, 

they delete themselves.  

static void prvFirst( void *pvParameters ) //Task 1 
{ 
 for( ;; ) 
 { 
  for (count1 = 0; count1 < MAX_LOOPS; count1++) 
  { 
   if (sem_exe == 1) 
   { 
    xSemaphoreTake(xSemaphore, portMAX_DELAY); 
   } 
   taskYIELD(); 
 
   if (sem_exe == 1) 
   { 
    xSemaphoreGive(xSemaphore); 
   } 
   taskYIELD(); 
  } 
  vTaskDelete(xHandleFirst); //Delete Task 1 
 } 
} 
 



50 

 
Code Listing 6: Semaphore Shuffle Task 2 

6.4.4   FreeRTOS Deadlock Breaking Time 

The Deadlock Breaking Time benchmark creates 3 tasks each with a higher priority than the next. 

Task 3 has the highest priority, Task 2 has a medium priority and Task 1 has the lowest priority. 

Task 1 takes the mutex and gets preempted by Task 2. Task 2 runs for a little and gets preempted 

by Task 3. Task 3 requests the mutex and a deadlock occurs because Task 1 has it. Task 3 blocks 

due to the dead-lock allowing Task 2 to run. Task 2 finishes and delays letting Task 1 run 

allowing the it to release the mutex. It then gets preempted immediately by Task 3 which takes 

the mutex and then releases it immediately. This benchmark repeats for the desired iterations. 

This benchmark measures the dead-lock resolution time. By this, we mean that the time is 

inflated by the time of 2 preemptions, and several task-switches that is caused by the dead-lock. 

Tasks 1, 2, and 3 are shown in the Code Listings 7, 8, and 9 respectively.  

 

static void prvSecond( void *pvParameters ) //Task 2 
{ 
 for( ;; ) 
 { 
  for (count2 = 0; count2 < MAX_LOOPS; count2++) 
  { 
   if (sem_exe == 1) 
   { 
    xSemaphoreTake(xSemaphore, portMAX_DELAY); 
   } 
   taskYIELD(); 
 
   if (sem_exe == 1) 
   { 
    xSemaphoreGive(xSemaphore); 
   } 
   taskYIELD(); 
  } 
  vTaskDelete(xHandleSecond); //Delete Task 2 
 } 
}  
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Code Listing 7: Dead-Lock Breaking Task 1 

The xMutex is the handle for the mutex. 

 
Code Listing 8: Dead-Lock Breaking Task 2 

The ONE_TICK variable is again the number of for loops that can be performed for one tick. 

ONE_TICK/4 is used because we only want the medium priority to run for a small amount of 

static void prvSecond( void *pvParameters ) //Task 2 
{ 
 for( ;; ) 
 { 
    for( ;; ) 
    { 
      if (count2 == MAX_LOOPS) 
      { 
       vTaskDelete(xHandleSecond); //Delete Task 2 
      } 
 
     for (j = 0; j < ONE_TICK/4; j++)  //Delay loop 
   { 
    //Do Nothing 
   } 
   vTaskDelay(1); //Delay a single tick 
      count2++; 
    } 
 } 
}  

static void prvFirst( void *pvParameters ) //Task 1 
{ 
 for( ;; ) 
 { 
  if (count1 == MAX_LOOPS) 
  { 
   vTaskDelete(xHandleFirst); //Delete Task 1 
  } 
  xSemaphoreTake(xMutex, portMAX_DELAY); //Take control 
 
  for (i = 0; i < ONE_TICK; i++) //delay loop 
  { 
   //Do Nothing 
  } 
  xSemaphoreGive(xMutex); //Release control 
  count1++; 
 } 
} 
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time just to take up some of the tick before Task 1 runs. This will make sure that Task 1 will be 

preempted. It will also make sure that there is an intermediate task between Task 1 and 3 in order 

to cause the dead-lock. 

 
Code Listing 9: Dead-Lock Breaking Task 3 

The benchmark is ran twice by running the code with and without the dead-lock occurring. The 

dead_brk variable when set to zero prevents the dead-lock from occurring. The benchmark is 

measured with this setup and then dead_brk is set to 1. This causes the dead-lock to occur and is 

measured again. The two measurements subtracted from each other produce the dead-lock 

resolution time. 

6.4.5   FreeRTOS Intertask Messaging Latency 

The Intetask Messaging Latency benchmark works is by creating two tasks. Task 2 receives 

messages while Task 1 sends them. Task 2 has a higher priority and attempts to receive and when 

it does not receive a message it blocks. This allows Task 1 to run, send a message, and then get 

preempted by Task 2 who receives the message. Task 2 will attempt to receive another message 

and then again blocks. It repeats for the specified number of iterations. The measured time is the 

static void prvThird( void *pvParameters ) 
{ 
 for( ;; ) 
 { 
  if (count3 == MAX_LOOPS) 
  { 
     vTaskDelete(xHandleThird);  //Delete Task 3 
  } 
  vTaskDelay(1); //Delay a single tick 
  i = ONE_TICK; //Reset Task 1 
 
  if (dead_brk == 1) 
  { 
   xSemaphoreTake(xMutex, portMAX_DELAY);  //Take control 
   xSemaphoreGive(xMutex);  //Release control 
  } 
  count3++; 
 } 
} 
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time it takes to send a message, task switch, receive the message, block due to an empty Queue 

and then task switch back to Task 1. Again the benchmark must first determine the time it takes 

to perform the for loops and extra code as shown in Code Listing 10. 

 
Code Listing 10: Benchmark without Intertask Messaging 

The benchmark then runs with the two task sending and receiving messages. This is shown in 

Code Listing 11. 

 
Code Listing 11: Intertask Message Latency 

static void prvFirst( void *pvParameters ) 
{ 
 for( ;; ) 
 { 
  for (count1 = 0; count1 < MAX_LOOPS; count1++) 
  { 
   if (xQueueSendToBack(xQueue, msg_buf, portMAX_DELAY)!=pdPASS) 
   { 
    // Nothing could be sent because blocking timer expired 
   } 
  } 
  vTaskDelete(xHandleFirst);  // Delete Task 1 
 } 
} 
 
static void prvSecond( void *pvParameters ) 
{ 
 for( ;; ) 
 { 
  for (count2 = 0; count2 < MAX_LOOPS; count2++) 
  {  
   if (xQueueReceive(xQueue, recv_buf, portMAX_DELAY)!= pdPASS) 
   { 
    // Nothing Received because blocking timer expired 
   } 
  } 
   vTaskDelete(xHandleSecond);  // Delete Task 2 
 } 
} 
 

   for (count1 = 0; count1 < MAX_LOOPS; count1++) 
     { 
    // Do Nothing 
     } 
   for (count2 = 0; count2 < MAX_LOOPS; count2++) 
     { 
    // Do Nothing 
     } 
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The xQueueReceive(); and xQueueSend(); commands are used to send and receive to the queue 

that was created. The xQueue is the handle for the queue, msg_buf variable holds the message to 

be sent, and the recv_buf is the variable that holds the message. The two times are subtracted 

from each other to provide the Intertask Message Latency and task switching time. The 

previously calculated task-switching time is then subtracted to get the Intertask Message Latency 

by itself.  

6.4.6   FreeRTOS Rhealstone Benchmark 

The FreeRTOS Rhealstone Benchmarks with calculated and the statistics of each are presented in 

Table 1. The Interrupt Latency benchmark was not included due to difficulties of implementation. 

The table presents the average time for each parameter, a maximum and minimum value from 

running each benchmark five times of each set of iterations specified in the Appendices, and the 

variance of each. 

Table 1: FreeRTOS Rhealstone Benchmarks 

Rhealstone Benchmarks Average Time Minimum  Maximum Variance 

Task-Switching Time 230.26 nsec 230.26 nsec 230.26 nsec .00027 nsec 

Preemption Time 11.348 µsec 11.346 µsec 11.352 µsec 5.4858 nsec 

Semaphore Shuffle Time 321.85 nsec 321.75 nsec 322.63 nsec .87514 nsec 

Deadlock Breaking Time 24.041 µsec 19.499 µsec 29.315 µsec 9.8150 usec 

Intertask Message Latency 1.5564 µsec 1.5559 µsec 1.5571 µsec 1.2327 nsec 

 

The Rhealstone Benchmark can be calculated from these values using equation 2.1 and 2.2 with 

the exception of the Interrupt Latency measurement. 
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CHAPTER 7 

CONCLUSION   

The completed work in this thesis includes 5 of the Rhealstone benchmarks for the Zynq EPP 

Evaluation Board running FreeRTOS. These benchmarks provide a basis for embedded designers 

to understand and compare FreeRTOS’s performance on the Zynq EPP ARM core. This thesis 

provides a starting point for more advance application development with FreeRTOS by providing 

thoroughly commented and detailed code. It provides information on starting a new project with 

the Zynq EPP and compiled a plethora of resources that may help further the development. The 

thesis began by developing a history to understand why the Zynq EPP was designed and utilizes 

the hardware that it does. This provides context on why it is such an important piece of hardware 

in today’s engineering world. The basics of the design tools were discussed in a manner that helps 

designers understand their overall importance and roles quickly and effectively. With an 

understanding of the tools, the Zynq EPP could be used to develop application upon with ease. 

The performance of these applications are important to benchmark in order understand the 

hardware’s capabilities including its strengths and weaknesses. The thesis provides a stepping 

stone for future Zynq EPP development.  
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CHAPTER 8 

FUTURE WORK 

As more embedded designers work with the Zynq EPP, the community will grow. A greater 

understanding of how the hardware can be utilized will become more readily available. With a 

stronger understanding of the hardware platform, more resources and support will be available for 

designers to reference. The future goals of this research are to implement AMP starting with 

Bare-Metal running on both cores. Next, would be to have FreeRTOS running on both cores or 

FreeRTOS on one core and Bare-Metal on another. Benchmarking with this type of PS would 

continue in order to provide embedded designers with an even stronger understanding of the 

system’s capabilities. Additional goals would be to extend more work to the PL. Once a solid 

foundation is laid for the Zynq EPP, it will become the training tool for instructing future 

embedded engineers.  
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APPENDIX A  

TASK-SWITCHING CODE 

/*------------------------------------------------- ---------- 
Author: Timothy J Boger 
Date: 4/29/13 
 
Task Switching Benchmark 
OS:FreeRTOS 
Platform: ZC702 Evaluation Board 
References: - “FreeRTOS Port for Xilinx Zynq Devices” FreeRTOS Ltd. February 12, 2013. 
               -  R. Kar.. "Implementing the Rhealstone Real-Time Benchmark". 1990. 
        -  Cory Nakaji. "MIO, EMIO and AXI GPIO LEDS for ZC702". 2013. 
/*------------------------------------------------- ----------*/ 
// Includes 
#include "FreeRTOS.h" 
#include "task.h" 
#include "queue.h" 
#include "timers.h" 
#include "xil_printf.h" 
#include "stdio.h" 
#include "xparameters.h" 
#include "xgpio.h" 
#include "xgpiops.h" 
 
//************************** 
//AXI Variables 
static XGpioPs emio_pmod2; 
 
#define EMIO_54  54 
#define EMIO_55  55 
#define EMIO_56  56 
#define EMIO_57  57 
 
//************************** 
//Benchmark Variables 
#define MAX_LOOPS_SERIAL 500000  //Max loops for simulation 
#define MAX_LOOPS_TASK_SWITCHING 499999 //Accounting for extra Task3 switching 
 
unsigned long  count1 = 0, count2 = 0; 
 
//************************************************* ******** 
// Priorities at which the tasks are created 
 
#define mainFIRST_TASK_PRIORITY  ( tskIDLE_PRIORITY + 2 ) 
#define mainSECOND_TASK_PRIORITY ( tskIDLE_PRIORITY + 2 ) 
#define mainTHIRD_TASK_PRIORITY ( tskIDLE_PRIORITY + 3 ) 
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//************************************************* ******** 
//Associate Functions with Tasks 
static void prvFirst( void *pvParameters ); 
static void prvSecond( void *pvParameters ); 
static void prvThird( void *pvParameters ); 
 
//************************************************* ******** 
//Task Handle 
xTaskHandle xHandleFirst; 
xTaskHandle xHandleSecond; 
xTaskHandle xHandleThird; 
 
//************************************************* ******** 
//Main 
int main( void ) 
{ 
 prvInitializeExceptions(); 
 
 //************************************************ ******* 
 //AXI Setup 
 
  XGpioPs_Config *ConfigPtrPS; 
 
      ConfigPtrPS = XGpioPs_LookupConfig(0); 
      XGpioPs_CfgInitialize(&emio_pmod2, ConfigPtrPS, 
          ConfigPtrPS->BaseAddr); 
 
      //******************************************* ************ 
      //Setup PMOD 2 pins 
         XGpioPs_SetDirectionPin(&emio_pmod2, EMIO_54, 1); 
         XGpioPs_SetOutputEnablePin(&emio_pmod2, EMIO_54, 1); 
         XGpioPs_SetDirectionPin(&emio_pmod2, EMIO_55, 1); 
         XGpioPs_SetOutputEnablePin(&emio_pmod2, EMIO_55, 1); 
         XGpioPs_SetDirectionPin(&emio_pmod2, EMIO_56, 1); 
         XGpioPs_SetOutputEnablePin(&emio_pmod2, EMIO_56, 1); 
         XGpioPs_SetDirectionPin(&emio_pmod2, EMIO_57, 1); 
         XGpioPs_SetOutputEnablePin(&emio_pmod2, EMIO_57, 1); 
 
      //******************************************* ************ 
      //Setup PMOD 2 outputs to zero 
         XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x0); 
         XGpioPs_WritePin(&emio_pmod2, EMIO_55, 0x0); 
         XGpioPs_WritePin(&emio_pmod2, EMIO_56, 0x0); 
         XGpioPs_WritePin(&emio_pmod2, EMIO_57, 0x0); 
 
 //************************************************ ******* 
 //Start Benchmark 
 xil_printf("Start of Task Switching Benchmark\n\r"); 
 xil_printf("Each task runs %D times\r\n", MAX_LOOPS_SERIAL); 
 
 /************************************************* **************** 



64 

  Serial Non_Switching Measurement 
 
  Measure execution time of task1 and task2 when they are executed 
  serially (without task switching). 
 
  Measure the time between the High and Low GPIO output 
 /************************************************* *****************/ 
 
 xil_printf("Start Serial Non_Switching Measurement\r\n"); 
 XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x1); //Set GPIO HIGH 
   for (count1 = 0; count1 < MAX_LOOPS_SERIAL; count1++) 
     { 
  //Do Nothing 
     } 
   for (count2 = 0; count2 < MAX_LOOPS_SERIAL; count2++) 
     { 
  // Do Nothing 
     } 
 
 XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x0); //Set GPIO LOW 
 
 xil_printf("Serial Non_Switching Measurement Done\r\n"); 
 
 /************************************************* **************** 
  Task Switching Measurement 
 
  Create three tasks. Task 1 and Task 2 will perform the task switching. 
  Task 3 controls the start and finish of the program and sets the GPIO pin 
 
  Measure the time between the High and Low GPIO output 
 ************************************************** ****************/ 
 
 xil_printf("Start Task Switching Measurement\r\n"); 
 
 //Create three tasks 
 xTaskCreate( prvFirst, ( signed char * ) "F", 
   configMINIMAL_STACK_SIZE, NULL, 
   mainFIRST_TASK_PRIORITY, &xHandleFirst  ); 
 xTaskCreate( prvSecond, ( signed char * ) "S", 
   configMINIMAL_STACK_SIZE, NULL, 
   mainSECOND_TASK_PRIORITY, &xHandleSecond  ); 
 xTaskCreate( prvThird, ( signed char * ) "T", 
   configMINIMAL_STACK_SIZE, NULL, 
   mainTHIRD_TASK_PRIORITY, &xHandleThird ); 
 
 vTaskStartScheduler(); 
 
 /* If all is well, the scheduler will now be running, and the following line 
 will never be reached.  If the following line does execute, then there was 
 insufficient FreeRTOS heap memory available for the idle and/or timer tasks 
 to be created.  See the memory management section on the FreeRTOS web site 



65 

 for more details. */ 
 for( ;; ); 
} 
//************************************************* ******************** 
//Task 3 
static void prvThird( void *pvParameters ) 
{ 
 for( ;; ) 
 { 
  //Runs First due to having highest priority 
    XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x1); //Set GPIO 
HIGH 
 
    vTaskPrioritySet(xHandleThird, tskIDLE_PRIORITY + 1); 
//reduce priority below Task 1 and 2 
 
//--------------------------  Task will yield here. Returns when Task 1 and 2 delete themselves 
 
    //xil_printf("LOW\r\n"); 
    XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x0); //Set GPIO 
LOW 
 
    xil_printf("Task Switching Measurement Done\r\n"); 
    vTaskDelete(xHandleThird);  //Delete Task 3 
 } 
} 
 
//************************************************* ******************** 
//Task 1 
static void prvFirst( void *pvParameters ) 
{ 
 for( ;; ) 
 { 
   for (count1 = 0; count1 < MAX_LOOPS_TASK_SWITCHING; 
count1++) 
   { 
    taskYIELD(); 
   } 
   vTaskDelete(xHandleFirst); //Delete Task 1 
 
 } 
} 
 
//************************************************* ******************** 
//Task 2 
static void prvSecond( void *pvParameters ) 
{ 
 for( ;; ) 
 { 
   for (count2 = 0; count2 < MAX_LOOPS_TASK_SWITCHING; 
count2++) 
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   { 
    taskYIELD(); 
   } 
   vTaskDelete(xHandleSecond); //Delete Task 2 
 } 
} 
 
//************************************************* ******************** 
void vApplicationMallocFailedHook( void ) 
{ 
 /* vApplicationMallocFailedHook() will only be called if 
 configUSE_MALLOC_FAILED_HOOK is set to 1 in FreeRTOSConfig.h.  It is a hook 
 function that will get called if a call to pvPortMalloc() fails. 
 pvPortMalloc() is called internally by the kernel whenever a task, queue or 
 semaphore is created.  It is also called by various parts of the demo 
 application.  If heap_1.c or heap_2.c are used, then the size of the heap 
 available to pvPortMalloc() is defined by configTOTAL_HEAP_SIZE in 
 FreeRTOSConfig.h, and the xPortGetFreeHeapSize() API function can be used 
 to query the size of free heap space that remains (although it does not 
 provide information on how the remaining heap might be fragmented). */ 
 taskDISABLE_INTERRUPTS(); 
 for( ;; ); 
} 
 
//************************************************* ******************** 
void vApplicationStackOverflowHook( xTaskHandle *pxTask, signed char *pcTaskName ) 
{ 
 ( void ) pcTaskName; 
 ( void ) pxTask; 
 
 /* vApplicationStackOverflowHook() will only be called if 
 configCHECK_FOR_STACK_OVERFLOW is set to either 1 or 2.  The handle and name 
 of the offending task will be passed into the hook function via its 
 parameters.  However, when a stack has overflowed, it is possible that the 
 parameters will have been corrupted, in which case the pxCurrentTCB variable 
 can be inspected directly. */ 
 taskDISABLE_INTERRUPTS(); 
 for( ;; ); 
} 
 
//************************************************* ******************** 
void vApplicationSetupHardware( void ) 
{ 
 /* Do nothing */ 
} 
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APPENDIX B  

PREEMPTION TIME CODE 

/*------------------------------------------------- ---------- 
Author: Timothy J Boger 
Date: 4/29/13 
 
Preemption Time Benchmark 
OS:FreeRTOS 
Platform: ZC702 Evaluation Board 
References: -  “FreeRTOS Port for Xilinx Zynq Devices” FreeRTOS Ltd. February 12, 2013. 
            -  R. Kar.. "Implementing the Rhealstone Real-Time Benchmark". 1990. 
        -  Cory Nakaji. "MIO, EMIO and AXI GPIO LEDS for ZC702". 2013. 
/*------------------------------------------------- ----------*/ 
// Includes 
#include "FreeRTOS.h" 
#include "task.h" 
#include "queue.h" 
#include "timers.h" 
#include "xil_printf.h" 
#include "stdio.h" 
#include "xparameters.h" 
#include "xgpio.h" 
#include "xgpiops.h" 
 
//************************** 
//AXI Variables 
static XGpioPs emio_pmod2; 
 
#define EMIO_54  54 
#define EMIO_55  55 
#define EMIO_56  56 
#define EMIO_57  57 
 
//************************** 
//Benchmark Variables 
 
#define MAX_LOOPS 15000 //Max loops for simulation 
#define ONE_TICK 480000 //Number dependent on CPU. Must be longer than sleep period. 
      //The amount of for loop iterations per one interrupt tick 
#define ONE_TICK_AVERAGE 475620 
unsigned long  count1, count2, i; 
 
//************************************************* ******** 
// Priorities at which the tasks are created 
 
#define mainFIRST_TASK_PRIORITY  ( tskIDLE_PRIORITY + 2 ) 
#define mainSECOND_TASK_PRIORITY ( tskIDLE_PRIORITY + 3 ) 
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#define mainTHIRD_TASK_PRIORITY ( tskIDLE_PRIORITY + 4 ) 
 
//************************************************* ******** 
//Associate Functions with Tasks 
 
static void prvFirst( void *pvParameters ); 
static void prvSecond( void *pvParameters ); 
static void prvThird( void *pvParameters ); 
 
//************************************************* ******** 
//Task and Queue Handles 
 
xTaskHandle xHandleFirst; 
xTaskHandle xHandleSecond; 
xTaskHandle xHandleThird; 
 
//************************************************* ******** 
//Main 
 
int main( void ) 
{ 
 prvInitializeExceptions(); 
 
 //************************************************ ******* 
 //AXI Setup 
 
  XGpioPs_Config *ConfigPtrPS; 
 
      ConfigPtrPS = XGpioPs_LookupConfig(0); 
      XGpioPs_CfgInitialize(&emio_pmod2, ConfigPtrPS, 
          ConfigPtrPS->BaseAddr); 
 
      //******************************************* ************ 
      //Setup PMOD 2 pins 
         XGpioPs_SetDirectionPin(&emio_pmod2, EMIO_54, 1); 
         XGpioPs_SetOutputEnablePin(&emio_pmod2, EMIO_54, 1); 
         XGpioPs_SetDirectionPin(&emio_pmod2, EMIO_55, 1); 
         XGpioPs_SetOutputEnablePin(&emio_pmod2, EMIO_55, 1); 
         XGpioPs_SetDirectionPin(&emio_pmod2, EMIO_56, 1); 
         XGpioPs_SetOutputEnablePin(&emio_pmod2, EMIO_56, 1); 
         XGpioPs_SetDirectionPin(&emio_pmod2, EMIO_57, 1); 
         XGpioPs_SetOutputEnablePin(&emio_pmod2, EMIO_57, 1); 
 
      //******************************************* ************ 
      //Setup PMOD 2 outputs to zero 
         XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x0); 
         XGpioPs_WritePin(&emio_pmod2, EMIO_55, 0x0); 
         XGpioPs_WritePin(&emio_pmod2, EMIO_56, 0x0); 
         XGpioPs_WritePin(&emio_pmod2, EMIO_57, 0x0); 
 
 //************************************************ ******* 
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 //Start Benchmark 
 
 xil_printf("Start of Preemption Time Benchmark\n\r"); 
 xil_printf("Each task runs %D times\r\n", MAX_LOOPS); 
 
 /************************************************* ********************** 
  Serial Execution Measurement Without Task Switching or Preemption 
 
  Measure execution time of task1 and task2 when they are executed 
  serially (without messages). 
 
  Measure the time between the High and Low GPIO output 
 /************************************************* ********************/ 
 
 XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x1); //Set GPIO HIGH 
 xil_printf("Start Serial Execution Without Task Switching or Preemption\r\n"); 
 
   for (count1 = 0; count1 < MAX_LOOPS; count1++) 
     { 
    for (i = 0; i < ONE_TICK_AVERAGE; i++) 
   { 
      //Do Nothing 
   } 
     } 
   for (count2 = 0; count2 < MAX_LOOPS; count2++) 
     { 
    i = ONE_TICK; //reset i because i never reaches ONE_TICK 
     } 
 
 XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x0); //Set GPIO LOW 
 
 xil_printf("Serial Execution Without Task Switching or Preemption Done\r\n"); 
 
 /************************************************* ********************** 
  Task Switching and Preemption Time Measurement 
 
  Create three tasks. Task 1 and Task 2 will perform the Task Switching and Preemption. 
  Task 1 does busy work and gets preempted by Task 2. 
  Task 2 has a higher priority than Task 1. Task 1 only runs when Task 2 yields. 
  Task 3 controls the start and finish of the program and sets the GPIO pin 
 
  Measure the time between the High and Low GPIO output 
 
 ************************************************** *********************/ 
 xil_printf("Start Task Switching and Preemption Time Measurement\r\n"); 
 
 //Create three tasks 
 xTaskCreate( prvFirst, ( signed char * ) "F", 
   configMINIMAL_STACK_SIZE, NULL, 
   mainFIRST_TASK_PRIORITY, &xHandleFirst  ); 
 xTaskCreate( prvSecond, ( signed char * ) "S", 



70 

   configMINIMAL_STACK_SIZE, NULL, 
   mainSECOND_TASK_PRIORITY, &xHandleSecond  ); 
 xTaskCreate( prvThird, ( signed char * ) "T", 
   configMINIMAL_STACK_SIZE, NULL, 
   mainTHIRD_TASK_PRIORITY, &xHandleThird ); 
 
 vTaskStartScheduler(); 
 
 /* If all is well, the scheduler will now be running, and the following line 
 will never be reached.  If the following line does execute, then there was 
 insufficient FreeRTOS heap memory available for the idle and/or timer tasks 
 to be created.  See the memory management section on the FreeRTOS web site 
 for more details. */ 
 for( ;; ); 
} 
//************************************************* ******************** 
//Task 3 
 
static void prvThird( void *pvParameters ) 
{ 
 for( ;; ) 
 { 
  //Runs First due to having highest priority 
   XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x1); //Set GPIO HIGH 
 
   vTaskPrioritySet(xHandleThird, tskIDLE_PRIORITY + 1); //reduce 
priority below Task 1 and 2 
 
//--------------------------  Task will yield here. Returns when Task 1 and 2 delete themselves 
 
   XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x0); //Set GPIO LOW 
 
   xil_printf("Task Switching and Preemption Time Measurement 
Done\r\n"); 
 
   vTaskDelete(xHandleThird);  //Delete Task 3 
 
 } 
} 
 
//************************************************* ******************** 
//Task 1 - Lower Priority, Gets Preempted 
 
static void prvFirst( void *pvParameters ) 
{ 
 for( ;; ) 
 { 
  for (count1 = 0; count1 < MAX_LOOPS; count1++) 
  { 
   for (i = 0; i < ONE_TICK; i++) 
   { 
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      //Do Nothing 
   } 
  } 
  vTaskDelete(xHandleFirst); //Delete Task 1 
 } 
} 
 
//************************************************* ******************** 
//Task 2 - Higher Priority, Preempts 
 
static void prvSecond( void *pvParameters ) 
{ 
 for( ;; ) 
 { 
  for (count2 = 0; count2 < MAX_LOOPS; count2++) 
  { 
   //xil_printf("i value: = %D \r\n", i); //Used to determine 
AVERAGE_ONE_TICK 
   i = ONE_TICK; //reset i because i never reaches ONE_TICK  
   vTaskDelay(1); //Delay a single tick 
  } 
  vTaskDelete(xHandleSecond); //Delete Task 2 
 } 
} 
 
//************************************************* ******************** 
void vApplicationMallocFailedHook( void ) 
{ 
 /* vApplicationMallocFailedHook() will only be called if 
 configUSE_MALLOC_FAILED_HOOK is set to 1 in FreeRTOSConfig.h.  It is a hook 
 function that will get called if a call to pvPortMalloc() fails. 
 pvPortMalloc() is called internally by the kernel whenever a task, queue or 
 semaphore is created.  It is also called by various parts of the demo 
 application.  If heap_1.c or heap_2.c are used, then the size of the heap 
 available to pvPortMalloc() is defined by configTOTAL_HEAP_SIZE in 
 FreeRTOSConfig.h, and the xPortGetFreeHeapSize() API function can be used 
 to query the size of free heap space that remains (although it does not 
 provide information on how the remaining heap might be fragmented). */ 
 taskDISABLE_INTERRUPTS(); 
 for( ;; ); 
} 
 
//************************************************* ******************** 
void vApplicationStackOverflowHook( xTaskHandle *pxTask, signed char *pcTaskName ) 
{ 
 ( void ) pcTaskName; 
 ( void ) pxTask; 
 
 /* vApplicationStackOverflowHook() will only be called if 
 configCHECK_FOR_STACK_OVERFLOW is set to either 1 or 2.  The handle and name 
 of the offending task will be passed into the hook function via its 
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 parameters.  However, when a stack has overflowed, it is possible that the 
 parameters will have been corrupted, in which case the pxCurrentTCB variable 
 can be inspected directly. */ 
 taskDISABLE_INTERRUPTS(); 
 for( ;; ); 
} 
 
//************************************************* ******************** 
void vApplicationSetupHardware( void ) 
{ 
 /* Do nothing */ 
} 
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APPENDIX C  

INTERTASK MESSAGE LATENCY CODE 

/*------------------------------------------------- ---------- 
Author: Timothy J Boger 
Date: 4/29/13 
 
Inter-Task Message Latency Benchmark 
OS:FreeRTOS 
Platform: ZC702 Evaluation Board 
References: -  “FreeRTOS Port for Xilinx Zynq Devices” FreeRTOS Ltd. February 12, 2013. 
            -  R. Kar.. "Implementing the Rhealstone Real-Time Benchmark". 1990. 
        -  Cory Nakaji. "MIO, EMIO and AXI GPIO LEDS for ZC702". 2013. 
/*------------------------------------------------- ----------*/ 
// Includes 
#include "FreeRTOS.h" 
#include "task.h" 
#include "queue.h" 
#include "timers.h" 
#include "xil_printf.h" 
#include "stdio.h" 
#include "xparameters.h" 
#include "xgpio.h" 
#include "xgpiops.h" 
 
//************************** 
//AXI Variables 
static XGpioPs emio_pmod2; 
 
#define EMIO_54  54 
#define EMIO_55  55 
#define EMIO_56  56 
#define EMIO_57  57 
 
//************************** 
//Benchmark Variables 
#define MAX_LOOPS 1000000  //Max loops for simulation 
 
char msg_buf[10] = "MESSAGE", recv_buf[10]; 
 
#define Queue_Length 10 
#define Queue_Item_Size sizeof(msg_buf) 
 
unsigned long  count1, count2; 
 
//************************************************* ******** 
// Priorities at which the tasks are created 
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#define mainFIRST_TASK_PRIORITY  ( tskIDLE_PRIORITY + 2 ) 
#define mainSECOND_TASK_PRIORITY ( tskIDLE_PRIORITY + 3 ) 
#define mainTHIRD_TASK_PRIORITY ( tskIDLE_PRIORITY + 4 ) 
 
//************************************************* ******** 
//Associate Functions with Tasks 
 
static void prvFirst( void *pvParameters ); 
static void prvSecond( void *pvParameters ); 
static void prvThird( void *pvParameters ); 
 
//************************************************* ******** 
//Task and Queue Handles 
 
xTaskHandle xHandleFirst; 
xTaskHandle xHandleSecond; 
xTaskHandle xHandleThird; 
 
xQueueHandle xQueue; 
 
//************************************************* ******** 
//Main 
 
int main( void ) 
{ 
 prvInitializeExceptions(); 
 
 //************************************************ ******* 
 //AXI Setup 
 
  XGpioPs_Config *ConfigPtrPS; 
 
      ConfigPtrPS = XGpioPs_LookupConfig(0); 
      XGpioPs_CfgInitialize(&emio_pmod2, ConfigPtrPS, 
          ConfigPtrPS->BaseAddr); 
 
      //******************************************* ************ 
      //Setup PMOD 2 pins 
         XGpioPs_SetDirectionPin(&emio_pmod2, EMIO_54, 1); 
         XGpioPs_SetOutputEnablePin(&emio_pmod2, EMIO_54, 1); 
         XGpioPs_SetDirectionPin(&emio_pmod2, EMIO_55, 1); 
         XGpioPs_SetOutputEnablePin(&emio_pmod2, EMIO_55, 1); 
         XGpioPs_SetDirectionPin(&emio_pmod2, EMIO_56, 1); 
         XGpioPs_SetOutputEnablePin(&emio_pmod2, EMIO_56, 1); 
         XGpioPs_SetDirectionPin(&emio_pmod2, EMIO_57, 1); 
         XGpioPs_SetOutputEnablePin(&emio_pmod2, EMIO_57, 1); 
 
      //******************************************* ************ 
      //Setup PMOD 2 outputs to zero 
         XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x0); 
         XGpioPs_WritePin(&emio_pmod2, EMIO_55, 0x0); 



75 

         XGpioPs_WritePin(&emio_pmod2, EMIO_56, 0x0); 
         XGpioPs_WritePin(&emio_pmod2, EMIO_57, 0x0); 
 
 //************************************************ ******* 
 //Start Benchmark 
 
 xil_printf("Start of InterTask Message Latency Benchmark\n\r"); 
 xil_printf("Each task runs %D times\r\n", MAX_LOOPS); 
 
 // Create Message Queue 
 
 xQueue = xQueueCreate(Queue_Length, Queue_Item_Size); 
 
 if(xQueue == NULL) 
 { 
    //The queue could not be created 
    xil_printf("Queue Create Error\n\r"); 
 } 
 
 /************************************************* ********************** 
  Serial Execution Measurement Without Messages 
 
  Measure execution time of task1 and task2 when they are executed 
  serially (without messages). 
 
  Measure the time between the High and Low GPIO output 
 /************************************************* *********************/ 
 
 XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x1); //Set GPIO HIGH 
 xil_printf("Start Serial Execution Measurement Without Messages\r\n"); 
 
   for (count1 = 0; count1 < MAX_LOOPS; count1++) 
     { 
    //Do Nothing 
     } 
   for (count2 = 0; count2 < MAX_LOOPS; count2++) 
     { 
    // Do Nothing 
     } 
 
 XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x0); //Set GPIO LOW 
 
 xil_printf("Serial Execution Measurement Without Messages Done\r\n"); 
 
 /************************************************* ********************** 
  Inter-Task Message Latency Measurement 
 
  Create three tasks. Task 1 and Task 2 will perform the Messaging. 
  Task 1 sends messages, Task 2 receives them. 
  Task 2 has a higher priority than Task 1 to make sure it receives messages immediately 
  Task 3 controls the start and finish of the program and sets the GPIO pin 
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  Measure the time between the High and Low GPIO output 
 ************************************************** *********************/ 
 
 xil_printf("Start Inter-Task Message Latency Measurement\r\n"); 
 
 //Create three tasks 
 xTaskCreate( prvFirst, ( signed char * ) "F", 
   configMINIMAL_STACK_SIZE, NULL, 
   mainFIRST_TASK_PRIORITY, &xHandleFirst  ); 
 xTaskCreate( prvSecond, ( signed char * ) "S", 
   configMINIMAL_STACK_SIZE, NULL, 
   mainSECOND_TASK_PRIORITY, &xHandleSecond  ); 
 xTaskCreate( prvThird, ( signed char * ) "T", 
   configMINIMAL_STACK_SIZE, NULL, 
   mainTHIRD_TASK_PRIORITY, &xHandleThird ); 
 
 vTaskStartScheduler(); 
 
 /* If all is well, the scheduler will now be running, and the following line 
 will never be reached.  If the following line does execute, then there was 
 insufficient FreeRTOS heap memory available for the idle and/or timer tasks 
 to be created.  See the memory management section on the FreeRTOS web site 
 for more details. */ 
 for( ;; ); 
} 
//************************************************* ******************** 
//Task 3 
 
static void prvThird( void *pvParameters ) 
{ 
 for( ;; ) 
 { 
  //Runs First due to having highest priority 
   XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x1); //Set GPIO HIGH 
 
   vTaskPrioritySet(xHandleThird, tskIDLE_PRIORITY + 1); //reduce 
priority below Task 1 and 2 
 
//--------------------------  Task will yield here. Returns when Task 1 and 2 delete themselves 
 
   XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x0); //Set GPIO LOW 
 
   xil_printf("Inter-Task Message Latency Measurement Done\r\n"); 
 
   vQueueDelete(xQueue); //Delete Queue 
 
   vTaskDelete(xHandleThird);  //Delete Task 3 
 
 } 
} 
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//************************************************* ******************** 
//Task 1 - Sends Messages 
static void prvFirst( void *pvParameters ) 
{ 
 for( ;; ) 
 { 
  for (count1 = 0; count1 < MAX_LOOPS; count1++) 
  { 
   if(xQueueSendToBack(xQueue, msg_buf, 
portMAX_DELAY)!=pdPASS) 
   { 
    //Nothing could be sent blocking timer expired 
    xil_printf("Sent Blocking Timer Ran Out \r\n"); 
   } 
  } 
  vTaskDelete(xHandleFirst); //Delete Task 1 
 } 
} 
 
//************************************************* ******************** 
//Task 2 
static void prvSecond( void *pvParameters ) 
{ 
 for( ;; ) 
 { 
  for (count2 = 0; count2 < MAX_LOOPS; count2++) 
  { 
   if(xQueueReceive(xQueue, recv_buf, portMAX_DELAY)!= pdPASS) 
   { 
    //Nothing Received because blocking timer expired 
    xil_printf("Receive Blocking Timer Ran Out \r\n"); 
   } 
  } 
  vTaskDelete(xHandleSecond); //Delete Task 2 
 } 
} 
 
//************************************************* ******************** 
void vApplicationMallocFailedHook( void ) 
{ 
 /* vApplicationMallocFailedHook() will only be called if 
 configUSE_MALLOC_FAILED_HOOK is set to 1 in FreeRTOSConfig.h.  It is a hook 
 function that will get called if a call to pvPortMalloc() fails. 
 pvPortMalloc() is called internally by the kernel whenever a task, queue or 
 semaphore is created.  It is also called by various parts of the demo 
 application.  If heap_1.c or heap_2.c are used, then the size of the heap 
 available to pvPortMalloc() is defined by configTOTAL_HEAP_SIZE in 
 FreeRTOSConfig.h, and the xPortGetFreeHeapSize() API function can be used 
 to query the size of free heap space that remains (although it does not 
 provide information on how the remaining heap might be fragmented). */ 
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 taskDISABLE_INTERRUPTS(); 
 for( ;; ); 
} 
 
//************************************************* ******************** 
void vApplicationStackOverflowHook( xTaskHandle *pxTask, signed char *pcTaskName ) 
{ 
 ( void ) pcTaskName; 
 ( void ) pxTask; 
 
 /* vApplicationStackOverflowHook() will only be called if 
 configCHECK_FOR_STACK_OVERFLOW is set to either 1 or 2.  The handle and name 
 of the offending task will be passed into the hook function via its 
 parameters.  However, when a stack has overflowed, it is possible that the 
 parameters will have been corrupted, in which case the pxCurrentTCB variable 
 can be inspected directly. */ 
 taskDISABLE_INTERRUPTS(); 
 for( ;; ); 
} 
 
//************************************************* ******************** 
void vApplicationSetupHardware( void ) 
{ 
 /* Do nothing */ 
} 
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APPENDIX D  

DEADLOCK-BREAK TIME CODE 

/*------------------------------------------------- ---------- 
Author: Timothy J Boger 
Date: 4/29/13 
 
Deadlock Break-Time Benchmark 
OS:FreeRTOS 
Platform: ZC702 Evaluation Board 
References: -  “FreeRTOS Port for Xilinx Zynq Devices” FreeRTOS Ltd. February 12, 2013. 
               -  R. Kar.. "Implementing the Rhealstone Real-Time Benchmark". 1990. 
        -  Cory Nakaji. "MIO, EMIO and AXI GPIO LEDS for ZC702". 2013. 
/*------------------------------------------------- ----------*/ 
// Includes 
#include "FreeRTOS.h" 
#include "task.h" 
#include "queue.h" 
#include "timers.h" 
#include "xil_printf.h" 
#include "stdio.h" 
#include "xparameters.h" 
#include "xgpio.h" 
#include "xgpiops.h" 
#include "semphr.h" 
 
//************************** 
//AXI Variables 
static XGpioPs emio_pmod2; 
 
#define EMIO_54  54 
#define EMIO_55  55 
#define EMIO_56  56 
#define EMIO_57  57 
 
//************************** 
//Benchmark Variables 
 
#define MAX_LOOPS 10000  //Max loops for simulation  10000 
#define ONE_TICK 480000 //Number dependent on CPU. Must be longer than sleep period. 
   //The amount of for loop iterations per one interrupt tick 
#define ONE_TICK_AVERAGE 475620 
 
unsigned long  count1 = 0, count2 = 0, count3 = 0; 
unsigned long  i, j; 
unsigned long  dead_brk;  // 1= Yes  0 = No 
 
//************************************************* ******** 
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// Priorities at which the tasks are created 
 
#define mainFIRST_TASK_PRIORITY  ( tskIDLE_PRIORITY + 2 ) 
#define mainSECOND_TASK_PRIORITY ( tskIDLE_PRIORITY + 3 ) 
#define mainTHIRD_TASK_PRIORITY  ( tskIDLE_PRIORITY + 4 ) 
#define mainFOURTH_TASK_PRIORITY ( tskIDLE_PRIORITY + 5 ) 
 
//************************************************* ******** 
//Associate Functions with Tasks 
static void prvFirst( void *pvParameters ); 
static void prvSecond( void *pvParameters ); 
static void prvThird( void *pvParameters ); 
static void prvFourth( void *pvParameters ); 
 
//************************************************* ******** 
//Task Handle 
xTaskHandle xHandleFirst; 
xTaskHandle xHandleSecond; 
xTaskHandle xHandleThird; 
xTaskHandle xHandleFourth; 
 
xSemaphoreHandle xMutex; 
 
//************************************************* ******** 
//Main 
int main( void ) 
{ 
 prvInitializeExceptions(); 
 
 //************************************************ ******* 
 //AXI Setup 
 
  XGpioPs_Config *ConfigPtrPS; 
 
      ConfigPtrPS = XGpioPs_LookupConfig(0); 
      XGpioPs_CfgInitialize(&emio_pmod2, ConfigPtrPS, 
          ConfigPtrPS->BaseAddr); 
 
      //******************************************* ************ 
      //Setup PMOD 2 pins 
         XGpioPs_SetDirectionPin(&emio_pmod2, EMIO_54, 1); 
         XGpioPs_SetOutputEnablePin(&emio_pmod2, EMIO_54, 1); 
         XGpioPs_SetDirectionPin(&emio_pmod2, EMIO_55, 1); 
         XGpioPs_SetOutputEnablePin(&emio_pmod2, EMIO_55, 1); 
         XGpioPs_SetDirectionPin(&emio_pmod2, EMIO_56, 1); 
         XGpioPs_SetOutputEnablePin(&emio_pmod2, EMIO_56, 1); 
         XGpioPs_SetDirectionPin(&emio_pmod2, EMIO_57, 1); 
         XGpioPs_SetOutputEnablePin(&emio_pmod2, EMIO_57, 1); 
 
      //******************************************* ************ 
      //Setup PMOD 2 outputs to zero 
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         XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x0); 
         XGpioPs_WritePin(&emio_pmod2, EMIO_55, 0x0); 
         XGpioPs_WritePin(&emio_pmod2, EMIO_56, 0x0); 
         XGpioPs_WritePin(&emio_pmod2, EMIO_57, 0x0); 
 
 //************************************************ ******* 
 //Start Benchmark 
 
 xil_printf("Start of Deadlock Break-Time Benchmark\n\r"); 
 xil_printf("Each task runs %D times\r\n", MAX_LOOPS); 
 
 /************************************************* **************** 
  Execution Time Measurement Without Deadlocks 
 
  Create four tasks. 
  Task 1 Lowest Priority 
  Task 2 Medium Priority. Only uses CPU time and sleeps periodically. 
  Task 3 Highest Priority. Potential deadlock when it tries to gain control 
  of the "region" resource, because low-priority task holds region mostly. 
 
  Task 4 controls the start and finish of the program and sets the GPIO pin 
 
  Note: when dead_brk = 0; 
  /************************************************ ***************** 
  Deadlock Resolution Measurement 
 
  Create four tasks. 
  Task 1 Lowest Priority 
  Task 2 Medium Priority. Only uses CPU time and sleeps periodically. 
  Task 3 Highest Priority. Potential deadlock when it tries to gain control 
  of the "region" resource, because low-priority task holds region mostly. 
 
  Task 4 controls the start and finish of the program and sets the GPIO pin 
 
  Measure the time between the High and Low GPIO output 
 
  Note: when dead_brk = 1; 
 /************************************************* *********************/ 
 //SET DESIRED BENHCMARK VALUE HERE: 
  dead_brk = 1; //Run tasks with/without deadlocking  0 = without, 1 = with 
  count1 = count2 = count3 = 0;  //Initialize counts 
 
  //Create Semaphore 
  xMutex = xSemaphoreCreateMutex(); 
 
 if (dead_brk == 0) 
 { 
  xil_printf("Start Execution Time Measurement Without Deadlocks\r\n"); 
 } 
 else 
 { 
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  xil_printf("Start Deadlock Resolution Measurement\r\n"); 
 } 
 
 //Create four tasks 
 xTaskCreate( prvFirst, ( signed char * ) "FI", 
   configMINIMAL_STACK_SIZE, NULL, 
   mainFIRST_TASK_PRIORITY, &xHandleFirst  ); 
 xTaskCreate( prvSecond, ( signed char * ) "S", 
   configMINIMAL_STACK_SIZE, NULL, 
   mainSECOND_TASK_PRIORITY, &xHandleSecond  ); 
 xTaskCreate( prvThird, ( signed char * ) "T", 
   configMINIMAL_STACK_SIZE, NULL, 
   mainTHIRD_TASK_PRIORITY, &xHandleThird ); 
 xTaskCreate( prvFourth, ( signed char * ) "FO", 
   configMINIMAL_STACK_SIZE, NULL, 
   mainFOURTH_TASK_PRIORITY, &xHandleFourth ); 
 
 vTaskStartScheduler(); 
 
 /* If all is well, the scheduler will now be running, and the following line 
 will never be reached.  If the following line does execute, then there was 
 insufficient FreeRTOS heap memory available for the idle and/or timer tasks 
 to be created.  See the memory management section on the FreeRTOS web site 
 for more details. */ 
 
 for( ;; ); 
} 
//************************************************* ******************** 
//Task 4 
static void prvFourth( void *pvParameters ) 
{ 
 for( ;; ) 
 { 
  //Runs First due to having highest priority 
    XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x1); //Set GPIO 
HIGH 
 
    vTaskPrioritySet(xHandleFourth, tskIDLE_PRIORITY + 1); 
//reduce priority below Task 1 and 2 
 
//--------------------------  Task will yield here. Returns when Task 1, 2, and 3 delete themselves 
 
    XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x0); //Set GPIO 
LOW 
 
    xil_printf("Measurement Done\r\n"); 
    vTaskDelete(xHandleFourth);  //Delete Task 4 
 } 
} 
//************************************************* ******************** 
//Task 1 
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// Lower Priority task. 
static void prvFirst( void *pvParameters ) 
{ 
 for( ;; ) 
 { 
  if (count1 == MAX_LOOPS) 
  { 
   vTaskDelete(xHandleFirst); //Delete Task 1 
  } 
  xSemaphoreTake(xMutex, portMAX_DELAY); //Take control 
 
  for (i = 0; i < ONE_TICK; i++) //delay loop 
  { 
   //Do Nothing 
  } 
  xSemaphoreGive(xMutex); //Release control 
  count1++; 
 } 
} 
//************************************************* ******************** 
//Task 2 
// Medium priority task. Only uses CPU time and sleep periodically. 
static void prvSecond( void *pvParameters ) 
{ 
 for( ;; ) 
 { 
    for( ;; ) 
    { 
      if (count2 == MAX_LOOPS) 
      { 
       vTaskDelete(xHandleSecond); //Delete Task 2 
      } 
 
     for (j = 0; j < ONE_TICK/4; j++)                   //delay loop 
   { 
    //Do Nothing 
   } 
   vTaskDelay(1); //Delay a single tick 
      count2++; 
    } 
 } 
} 
//************************************************* ******************** 
//Task 3 
// High priority task. Potential deadlock when it tries to gain control 
// of the "region" resource, because low-priority task holds region mostly. 
static void prvThird( void *pvParameters ) 
{ 
 for( ;; ) 
 { 
  if (count3 == MAX_LOOPS) 
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  { 
     vTaskDelete(xHandleThird);  //Delete Task 3 
  } 
  vTaskDelay(1); //Delay a single tick 
  i = ONE_TICK; //Reset Task 1 
 
  if (dead_brk == 1) 
  { 
   xSemaphoreTake(xMutex, portMAX_DELAY); //Take control 
   xSemaphoreGive(xMutex); //Release control 
  } 
  count3++; 
 } 
} 
//************************************************* ******************** 
void vApplicationMallocFailedHook( void ) 
{ 
 /* vApplicationMallocFailedHook() will only be called if 
 configUSE_MALLOC_FAILED_HOOK is set to 1 in FreeRTOSConfig.h.  It is a hook 
 function that will get called if a call to pvPortMalloc() fails. 
 pvPortMalloc() is called internally by the kernel whenever a task, queue or 
 semaphore is created.  It is also called by various parts of the demo 
 application.  If heap_1.c or heap_2.c are used, then the size of the heap 
 available to pvPortMalloc() is defined by configTOTAL_HEAP_SIZE in 
 FreeRTOSConfig.h, and the xPortGetFreeHeapSize() API function can be used 
 to query the size of free heap space that remains (although it does not 
 provide information on how the remaining heap might be fragmented). */ 
 taskDISABLE_INTERRUPTS(); 
 for( ;; ); 
} 
//************************************************* ******************** 
void vApplicationStackOverflowHook( xTaskHandle *pxTask, signed char *pcTaskName ) 
{ 
 ( void ) pcTaskName; 
 ( void ) pxTask; 
 
 /* vApplicationStackOverflowHook() will only be called if 
 configCHECK_FOR_STACK_OVERFLOW is set to either 1 or 2.  The handle and name 
 of the offending task will be passed into the hook function via its 
 parameters.  However, when a stack has overflowed, it is possible that the 
 parameters will have been corrupted, in which case the pxCurrentTCB variable 
 can be inspected directly. */ 
 taskDISABLE_INTERRUPTS(); 
 for( ;; ); 
} 
//************************************************* ******************** 
void vApplicationSetupHardware( void ) 
{ 
 /* Do nothing */ 
}  
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APPENDIX E  

SEMAPHORE SHUFFLE TIME CODE 

/*------------------------------------------------- ---------- 
Author: Timothy J Boger 
Date: 4/29/13 
 
Semaphore Shuffle Benchmark 
OS:FreeRTOS 
Platform: ZC702 Evaluation Board 
References: -  “FreeRTOS Port for Xilinx Zynq Devices” FreeRTOS Ltd. February 12, 2013. 
               -  R. Kar.. "Implementing the Rhealstone Real-Time Benchmark". 1990. 
        -  Cory Nakaji. "MIO, EMIO and AXI GPIO LEDS for ZC702". 2013. 
/*------------------------------------------------- ----------*/ 
// Includes 
#include "FreeRTOS.h" 
#include "task.h" 
#include "queue.h" 
#include "timers.h" 
#include "xil_printf.h" 
#include "stdio.h" 
#include "xparameters.h" 
#include "xgpio.h" 
#include "xgpiops.h" 
#include "semphr.h" 
 
//************************** 
//AXI Variables 
static XGpioPs emio_pmod2; 
 
#define EMIO_54  54 
#define EMIO_55  55 
#define EMIO_56  56 
#define EMIO_57  57 
 
//************************** 
//Benchmark Variables 
 
#define MAX_LOOPS 100000  //Max loops for simulation 100000 
 
unsigned long  count1 = 0, count2 = 0; 
unsigned long  sem_exe;  // 1= Yes  0 = No 
 
//************************************************* ******** 
// Priorities at which the tasks are created 
 
#define mainFIRST_TASK_PRIORITY  ( tskIDLE_PRIORITY + 2 ) 
#define mainSECOND_TASK_PRIORITY ( tskIDLE_PRIORITY + 2 ) 
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#define mainTHIRD_TASK_PRIORITY ( tskIDLE_PRIORITY + 3 ) 
 
//************************************************* ******** 
//Associate Functions with Tasks 
static void prvFirst( void *pvParameters ); 
static void prvSecond( void *pvParameters ); 
static void prvThird( void *pvParameters ); 
 
//************************************************* ******** 
//Task Handle 
xTaskHandle xHandleFirst; 
xTaskHandle xHandleSecond; 
xTaskHandle xHandleThird; 
 
xSemaphoreHandle xSemaphore; 
 
//************************************************* ******** 
//Main 
int main( void ) 
{ 
 prvInitializeExceptions(); 
 
 //************************************************ ******* 
 //AXI Setup 
 
  XGpioPs_Config *ConfigPtrPS; 
 
      ConfigPtrPS = XGpioPs_LookupConfig(0); 
      XGpioPs_CfgInitialize(&emio_pmod2, ConfigPtrPS, 
          ConfigPtrPS->BaseAddr); 
 
      //******************************************* ************ 
      //Setup PMOD 2 pins 
         XGpioPs_SetDirectionPin(&emio_pmod2, EMIO_54, 1); 
         XGpioPs_SetOutputEnablePin(&emio_pmod2, EMIO_54, 1); 
         XGpioPs_SetDirectionPin(&emio_pmod2, EMIO_55, 1); 
         XGpioPs_SetOutputEnablePin(&emio_pmod2, EMIO_55, 1); 
         XGpioPs_SetDirectionPin(&emio_pmod2, EMIO_56, 1); 
         XGpioPs_SetOutputEnablePin(&emio_pmod2, EMIO_56, 1); 
         XGpioPs_SetDirectionPin(&emio_pmod2, EMIO_57, 1); 
         XGpioPs_SetOutputEnablePin(&emio_pmod2, EMIO_57, 1); 
 
      //******************************************* ************ 
      //Setup PMOD 2 outputs to zero 
         XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x0); 
         XGpioPs_WritePin(&emio_pmod2, EMIO_55, 0x0); 
         XGpioPs_WritePin(&emio_pmod2, EMIO_56, 0x0); 
         XGpioPs_WritePin(&emio_pmod2, EMIO_57, 0x0); 
 
 //************************************************ ******* 
 //Start Benchmark 
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 xil_printf("Start Semaphore Shuffle Benchmark\n\r"); 
 xil_printf("Each task runs %D times\r\n", MAX_LOOPS); 
 
 /************************************************* **************** 
  Task Execution Time Without Semaphore Shuffling Measurement 
 
  Create three tasks. Task 1 and Task 2 will perform the Task Execution. 
 
 
  Task 3 controls the start and finish of the program and sets the GPIO pin 
 
  Measure the time between the High and Low GPIO output 
 
  Note: when sem_exe = 0; 
 
  /************************************************ ***************** 
  Semaphore Shuffling Measurement 
 
  Create three tasks. Task 1 and Task 2 will perform Semaphore Shuffling. 
  Time it takes a Task to acquire a semaphore that is owned by another equal priority task. 
 
  Task 3 controls the start and finish of the program and sets the GPIO pin 
 
  Measure the time between the High and Low GPIO output 
 
  Note: when sem_exe = 1; 
 
 /************************************************* *********************/ 
 //SET DESIRED BENHCMARK VALUE HERE: 
  sem_exe = 1; //Run tasks with/without semaphore shuffling  0 = without, 1 = with 
 
 if (sem_exe == 0) 
 { 
  xil_printf("Start Measurement without Semaphore Shuffling \r\n"); 
 } 
 else 
 { 
  xil_printf("Start Task Semaphore Shuffling Measurement\r\n"); 
  //Create Semaphore 
  vSemaphoreCreateBinary(xSemaphore); 
 } 
 
 //Create three tasks 
 xTaskCreate( prvFirst, ( signed char * ) "F", 
   configMINIMAL_STACK_SIZE, NULL, 
   mainFIRST_TASK_PRIORITY, &xHandleFirst  ); 
 xTaskCreate( prvSecond, ( signed char * ) "S", 
   configMINIMAL_STACK_SIZE, NULL, 
   mainSECOND_TASK_PRIORITY, &xHandleSecond  ); 
 xTaskCreate( prvThird, ( signed char * ) "T", 
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   configMINIMAL_STACK_SIZE, NULL, 
   mainTHIRD_TASK_PRIORITY, &xHandleThird ); 
 
 vTaskStartScheduler(); 
 
 /* If all is well, the scheduler will now be running, and the following line 
 will never be reached.  If the following line does execute, then there was 
 insufficient FreeRTOS heap memory available for the idle and/or timer tasks 
 to be created.  See the memory management section on the FreeRTOS web site 
 for more details. */ 
 
 for( ;; ); 
} 
//************************************************* ******************** 
//Task 3 
static void prvThird( void *pvParameters ) 
{ 
 for( ;; ) 
 { 
  //Runs First due to having highest priority 
    XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x1); //Set GPIO 
HIGH 
 
    vTaskPrioritySet(xHandleThird, tskIDLE_PRIORITY + 1); 
//reduce priority below Task 1 and 2 
 
//--------------------------  Task will yield here. Returns when Task 1 and 2 delete themselves 
 
    XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x0); //Set GPIO 
LOW 
 
    xil_printf("Measurement Done\r\n"); 
    vTaskDelete(xHandleThird);  //Delete Task 3 
 } 
} 
 
//************************************************* ******************** 
//Task 1 
static void prvFirst( void *pvParameters ) 
{ 
 for( ;; ) 
 { 
  for (count1 = 0; count1 < MAX_LOOPS; count1++) 
  { 
   if (sem_exe == 1) 
   { 
    xSemaphoreTake(xSemaphore, portMAX_DELAY); 
   } 
   taskYIELD(); 
 
   if (sem_exe == 1) 
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   { 
    xSemaphoreGive(xSemaphore); 
   } 
   taskYIELD(); 
  } 
  vTaskDelete(xHandleFirst); //Delete Task 1 
 } 
} 
//************************************************* ******************** 
//Task 2 
static void prvSecond( void *pvParameters ) 
{ 
 for( ;; ) 
 { 
  for (count2 = 0; count2 < MAX_LOOPS; count2++) 
  { 
   if (sem_exe == 1) 
   { 
    xSemaphoreTake(xSemaphore, portMAX_DELAY); 
   } 
   taskYIELD(); 
 
   if (sem_exe == 1) 
   { 
    xSemaphoreGive(xSemaphore); 
   } 
   taskYIELD(); 
  } 
  vTaskDelete(xHandleSecond); //Delete Task 2 
 } 
} 
 
//************************************************* ******************** 
void vApplicationMallocFailedHook( void ) 
{ 
 /* vApplicationMallocFailedHook() will only be called if 
 configUSE_MALLOC_FAILED_HOOK is set to 1 in FreeRTOSConfig.h.  It is a hook 
 function that will get called if a call to pvPortMalloc() fails. 
 pvPortMalloc() is called internally by the kernel whenever a task, queue or 
 semaphore is created.  It is also called by various parts of the demo 
 application.  If heap_1.c or heap_2.c are used, then the size of the heap 
 available to pvPortMalloc() is defined by configTOTAL_HEAP_SIZE in 
 FreeRTOSConfig.h, and the xPortGetFreeHeapSize() API function can be used 
 to query the size of free heap space that remains (although it does not 
 provide information on how the remaining heap might be fragmented). */ 
 taskDISABLE_INTERRUPTS(); 
 for( ;; ); 
} 
 
//************************************************* ******************** 
void vApplicationStackOverflowHook( xTaskHandle *pxTask, signed char *pcTaskName ) 



90 

{ 
 ( void ) pcTaskName; 
 ( void ) pxTask; 
 
 /* vApplicationStackOverflowHook() will only be called if 
 configCHECK_FOR_STACK_OVERFLOW is set to either 1 or 2.  The handle and name 
 of the offending task will be passed into the hook function via its 
 parameters.  However, when a stack has overflowed, it is possible that the 
 parameters will have been corrupted, in which case the pxCurrentTCB variable 
 can be inspected directly. */ 
 taskDISABLE_INTERRUPTS(); 
 for( ;; ); 
} 
 
//************************************************* ******************** 
void vApplicationSetupHardware( void ) 
{ 
 /* Do nothing */ 
} 


