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ABSTRACT

Embedded system designers require deterministial-tiree operating system (RTOS)
support for the commonly available processing haréwThe Xilinx Zynq Extensible Processing
Platform (EPP) offers software, hardware, and ifquiput (I/O) programmability on a single
chip. The Xilinx Zynq EPP features a Dual ARM Cari&9 MPCore, Advanced Microcontroller
Bus Architecture (AMBA) Advanced eXtensible Intaséa4 (AXI4) interconnect, and Xilinx
Kintex-7 series Programmable Logic (PL) which pdmvithe requisite capabilities for the
increasing demands of embedded processing apphsatiThe AMBA AXIl4 interconnect
provides high speed point to point interconnectibasveen the ARM processor cores and the
Field Programmable Gate Array (FPGA) structure veilhg for rapid data transmission to
optimize system performance. The incorporationroR&OS ensures predictable execution times
of applications. Benchmarks, such as the Rhealstoae developed to provide designers with a
method of evaluating and comparing these multitaskRTOSs running on various hardware
platforms. This thesis research performs Rhealstmehmarking and evaluates the AMBA
AXI4 interconnect performance while executing Fré€rs on the ARM core of the Zynq EPP

device.



A B S T R A T ettt e ettt oo e e et ettt e e e e e e e e eneee bt e e e e e e et tbba e e e aaeearan [
LIST OF FIGURES ...ttt et e e e e e e e e e e e e e e e e e e e e e e e e eeeeeeees v
LIST OF TABLES ... e Vi
NOMENCLATURE ... et e ettt e e e e e e e e e e e e bbb a e e e aeeeeneas Vi
CHAPTER 1
INTRODUGCTION L. emmm ettt e ettt ettt e e e e e e e e ettt e e e e e e e eee bt e e e eaaaennes 1
I R /[ 1 1Yz L1 o OO P PP PP PUPPPPN 1
1.2 ReSEAICN ODJECHVES .....ooeiiiiiiiiiieeeieeee ettt e e e e e e e e e e e e e eeeeeeeeeeeeees 7
1.3 Organization Of the THESIS ..........i e ettt e e 7
CHAPTER 2
BACKGROUND ..ottt 4444444 e e et e e et e e e et e ettt e e ettt et ettt e aaeeeaeaaaaaaaaaaaaaaaaaaaaaeeees 9
2.1 ARM AICHITECIUIE ....uiiiiiiiiiiiie ettt e e 9
P2 0 R [ 1§ (o To 18 o1 1o o PSPPSR PP PP PPPPP 9
2.1.2 ARM COMEX Aottt 10
2.2 AMBA BUS ..ottt ettt e e e e e et e e e 12
2.3 Zynqg Extensible Processing Platform............cccccovviiiiiiiiiiieeeeeeeee e 13
P2 0 R [ 11 (o To 18 ox 1o o H PP TP PPREPPPP PPN 13
2.3.2 Xilinx Zyng-7000 Evaluation Kit ..........c..eeeiieiiiiiiieieiiiiiiieiiieeiieseiessieeeeeeeseeeeeees 15
2.3.3  ZEABOAIU. ....ceiiiiieiiiie et 16
2.4 Real-Time Operating SYSIEIMS ..........ccmmmmmiiiiiiiiieeee i e e smreeee e 17
2.5 FrEeERTOS .o 18
2.6 Rhealstone: Real-Time Benchmark ..... oo 20
2.6.1 Task SWILChING TIME .....uuuiiiiiiiitceeeeereirrinreriie e aanresreenarennneannes 21
2.6.2 PreempPlion TimMe ..ottt e ee s reeennnnnrennne 21
P TG I [ 01 =T U] o] S =Y = o o YT 22
2.6.4 Semaphore Shuffling TIME ... 23
2.6.5 Deadlock Breaking TiME ........uuuuiuuriuuiiiiiiiiiiiiiiiiissssssss s s s s sssaannsnnnennnnnnnes 23
2.6.6 Intertask Messaging LatenCy ........cooeieeiiiiiiiiiiiieiieeeeeeeeeeeee e 24
2.6.7 Calculating the Rhealstone Performance Numb................ccoooeeeeeeiiieee 25

TABLE OF CONTENTS



CHAPTER 3

DESIGN TOOLS ... e 27
I 0 A 1 (0 To [ [ox 1o o FR PP PPPPPPPPPPRPPPR 27
3.2 XINX ISE L4 ..ottt ettt e e e e e e s s mnneee e e e e s e bbb b e e e e e e e e e e eann 27
3.3 PlANARNEAA ..o 28
3.4 Embedded Design Kit.........ooo i i nnnnnane 30
3.5 XilinX PlAtfOrm StUTIO ........coiuiiii e 30

3.5.1 Base System Builder WIizard ... 31
3.5.2  AXI INTEICONNECTION ....eiiiiiiiiiii ettt 32
3.5.3 Hardware Platform Configuration ..............ccccuriiiiiiieiee e 32
3.6 Software DevelopmeNnt Kit ..............ceeeeeuuriiiiiiiiieesss s s s nennnnnnnaaes 33
3.6.1 Board SUPPOIt PACKAGE ............e e eeeeeeeeiite et e e e 35
I ST (1 0 O = (=X A 35
3.6.3 First Stage BOOt LOAUEN .........coi et 35
3.6.4 Program FPGA.......ooiiiiiiieeeieeeeemeemr e 36
3.6.5 XMD CONSOIE ...ttt s sttt ene e e 36
3.7 CRIPSCOPE PO ...cooiiiiiiiiieeeee ettt e e et e e e e een e e e e e e e e e e a e neeas 37
IR S I =T = T I =T 1 PP 37

CHAPTER 4

ZYNQ EPP OPERATING SYSTEMS ..ottt eee e 38
o R [ 011 0T ¥ [t [o] o [PPSO PPPPPPPPPRPPPR 38
4.2 BAre-METal .........ooiiiiiiiiiiiiiiit s et 38
0 T 0 1) GO PP 39
4.3 FrEERTOS L. e et e e e e a e e e e a e 40

CHAPTER 5

UTILIZING THE ZYNQ EPP HARDWARE ... e 41
5.1 INEFOAUCTION .....eiiiiiiiiiit ettt e e e e s 41
LS = o To 1 [T 41
5.3 PMOU CONNECHION .......uviiiiiiiieie s ettt ettt s et e e be e e e sir e e e e s sebr e e e e e annneeees 42

CHAPTER 6

RE SULT S L.ttt o+ttt ettt ettt ettt e et et ee st ee s b ettt eee ettt e et e e et et ettt e et eeeeeeeeeeeeeees 43
6.1 INEFOAUCTION.....eeiiiiiiiii ittt e e e 43



6.2 Bare-Metal - SiNQIE COre ........uuuuiiiiiiiiiiiiiiiiiiiieeti e eeeeeeeeennennnennnes 43

6.3 FreeRTOS - Multitasking Single COre...ccuuueeiiiei i, 44
(S 7= T o Tod o =T (1 o U 44
6.4.1 FreeRTOS Task-SWiItChiNg TIME.......couuummeeeeeeiieeiiie e e 45
6.4.2 FreeRTOS Preemption TIME ........oi oo 46
6.4.3 FreeRTOS Semaphore Shuffle TIMe ... 48
6.4.4 FreeRTOS Deadlock Breaking Time ..., 50
6.4.5 FreeRTOS Intertask Messaging LatenCy.........cuvvevveieeeeiiiiiiiiiiiiieeee e 52
6.4.6 FreeRTOS Rhealstone Benchmark .....ccceeviiiiiiiiiciiiicc e 54
CHAPTER 7
CON CLUSION L.ttt sttt b et b b et bbb ebbbebnnbbanes 55
CHAPTER 8
FUTURE WORK . .ottt ettt e e et et e et e e et eeeeeeeeeeeeseeneees 56
REFERENGCES ... .ottt e e e e e et ettt em e e e e e e e e aebaa e e e aaaeaenes 57
APPENDICES
A: TASK-SWITCHING CODE .....cooiiiiiiiiiiiiiieeetee e 62
B: PREEMPTION TIME CODE ... .o 67
C: INTERTASK MESSAGE LATENCY CODE ......ouutiiiiiiiiiiiiiiii e 73
D: DEADLOCK-BREAK TIME CODKE .......uuiiiiieeie et e e 79
E: SEMAPHORE SHUFFLE TIME CODE .......coo oo 85



Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10

Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:

Figure 18:

Figure 19

LIST OF FIGURES

Kernel Layout: (a) Monolithic (b) Modul@) Extensible (d) Layered ..................... 2
Typical Symmetric Multiprocessing SyStEaYOUL ..............cevvvvieeiiiiiiiiiiiieeeeeeeeeeee 3
Typical Asymmetric Multiprocessing SYStEBEYOUL ...........cccovviiiiiriiiiieee e 3
Message Passing using the MULTIBUS . H...............oviiiiiiiiiiiieieeeeeeieeeeee e 6
Cortex-A9 Dual MP COre ArChItECUN e 11
Xilinx Zyng-7000 Extensible ProcessingtRirm Architecture........................e.. 14
Zyng 7000 Evaluation Kit ...........cccecieiiiiiiiiiiiiieii e eeeeeeeeeneennees 16
P =To | = o= 1o H PP PP P PPPPPPPPPPPPRN 17
Rhealstone Benchmarking: Task-SwitChilmgeT...............coovvvvviiiiiiiiiiiiiiiiieeeeeen. 21
: Rhealstone Benchmarking: Preemption TUMe. ...........uuuuuiiiiiiiiiiiie s 22

Rhealstone Benchmarking: Interrupt LeJen............cvvvvvvvvvveverviiiviniiiniieeeeneeeeeee. 22
Rhealstone Benchmarking: Semaphore-hliffne ................ccoooieen, 23
Rhealstone Benchmarking: Deadlock-Bigate ...............cevvviiiiiiiiiiiiiiiiiiecnns 24
Rhealstone Benchmarking: Intertask MgsEatencCy .........ovvvvvvvvevvveeeeeeeiinescennee. 24
Design Tools Block Diagram — XiliNX I8B ..........ccooiiiiiiiiiiiiieeeeee e 28
Design Tools Block Diagram — PlanAhead................covvvvivieiviiiiiiiiiniieeeeeneeeeeee, 29
Design Tools Block Diagram — XPS .ot 31
Processing Platform Peripheral Confitioina— XPS.........cccoooiiiiiiiieiiiiiiies v, 33

Design Tools Block Diagram — SDK ..., 34



LIST OF TABLES

Table 1: FreeRTOS Rhealstone Benchmarks

Vi



ACP
AHB
AMBA
AMP
APB
API
APSL
ARM
ASB
ATB
AXI
BIF
BSB
BSP
CPU
DMAC
EPP
EDK
ELF
EMIO
FPGA
FSBL
GDB
GPIO
HPS
HDL
I/O

ISA
ISS
ISE
JTAG
MHS
MIO

NOMENCLATURE

Accelerator Coherence Port
AMBA High-performance Bus
Advanced Microcontroller Bus Architecture
Asymmetric Multi-Processing
Advanced Peripheral Bus
Application Programming Interface
Advanced Processor Systems Laboratory
Advanced RISC Machine
Advanced System Bus

Advanced Trace Bus
Advanced eXtensible Interface
Boot Image File

Base System Builder

Board Support Package

Central Processing Unit

Direct Memory Access Controller
Extensible Processing Platform
Embedded Development Kit
Executable and Linkable Format
Extended Multiplexed 1/O
Field-Programmable Gate Array
First Stage Boot Loader

GNU Debugger

General Purpose I/0

Hard Processor System

Hardware Descriptive Language
Input/Output

Intellectual Property

Instruction Set Architecture
Instruction Set Simulator
Integrated Software Environment
Joint Test Action Group
Microprocessor Hardware Specification
Multiplexed I/O

vii

MMU
MPC
OCM
oS
PL
PLB
Pmod
PPC
PS
QEMU
QSPI
RTL
RISC
RTOS
SCDL
SDK
SIMD
SMP
SCuU
SoC
TCL
TDP
UCF
UART
XMD
XML
XMP
XPS
ZED

Memory Management Unit
Message Passing Coprocessor
On-Chip Memory
Operating System
Programmable Logic
Processor Local Bus
Peripheral Module
Power PC
Programming System
Quick EMUlator
Queued Serial Peripheral Interface
Register Transfer Level
Reduce Instruction Set Computer
Real-Time Operating System
System Chip Design Laboratory
Software Development Kit
Single Instruction-Multiple Data
Symmetric Multiprocessing
Snoop Control Unit
System-On-a-Chip
Tool Command Language
Targeted Design Platforms
User Constraints File
Universal Asynchronous Rx/Tx
Xilinx Microprocessor Debugger
eXtensible Markup Language
Xilinx Microprocessor Project
Xilinx Platform Studio

Zynq Evaluation & Development



CHAPTER 1

INTRODUCTION

1.1 Motivation

The goal of this thesis research is to providegrerdnce benchmarks for the Xilinx Zyng-7000
Extensible Processing Platform (EPP) and to prosigeemise for future embedded design. The
Xilinx Zyng EPP is capable of running Asymmetric Kiforocessing (AMP) of a Real-Time
Operating System (RTOS) called FreeRTOS. [1] ThallAMRM Cortex A-9 MPCore processor
is provided with various features including a prignAdvanced Microcontroller Bus Architecture
(AMBA) Advanced eXtensible Interface 4 (AXI4) 64thinterconnect that can be used with
various soft-core and hard-core peripherals an@8men Programmable Logic (PL) of the Xilinx
Kintex-7 series Field Programmable Gate Array (FP@&mbedded system designers require

these benchmarks in order to evaluate and desigffiaient Processing System (PS).

Multicore processor architectures have the potetttiprovide increased performance and power
efficiency, but at the cost of programming compigxi2] The complexity involved has been the
hindrance in the widespread adoption of multicorehidéecture. Multicore systems can be
implemented in Symmetric Multiprocessing (SMP) &R modes. These modes refer to how the
Operating System (OS) kernel will run on a systlat has more than one Central Processing

Unit (CPU) or core.

A kernel is the underlying main component of thgarity of computer OS. It bridges the gap
between the hardware and the application execudimghe PS. The kernel's responsibilities
include managing the communication between hardaadesoftware components to allocate the

system's resources accordingly through system eaitd inter-process communication. The



hardware components it manages include the processbl/O devices. [3] There are various
types of kernel structures including monolithic,duatar, extensible and layered. Figure 1 depicts

these structures.

Application Application Application Application
Software Software Software Software
Other System Other System Other System Other System
Software Software Software Software

Other OS Functions Other OS Functions Other OS Functions Other OS Functions

1] uclelis Exkt
Kernel Functions leus ons| === [l [ -Nucleus Functions.
e |
(B)

Skeletal Nucleus

(c) (d}

(a)
Figure 1: Kernel Layout: (a) Monolithic (b) Modular (c) Extensible (d) Layered [4]

Monolithic kernels are the most primitive with tB& code executing in the same address space.
This direct intercommunication is highly efficieaind increases performance, but makes it
difficult to manage and maintain. Modular kerndls\a for better overall functionality with ease

of management due to its modular nature, but lgetformance. Layered kernels are used to
divide components into manageable layers, but Hageaded performance when communication
between multiple levels is required. Extensiblenkts, also known as microkernels, execute
services in user space as servers to improve mugudad maintainability while also having a

lower level skeletal nucleus that controls basaxpss synchronization. [4]

With SMP, the kernel itself can run on any processtd can run simultaneously on multiple
processors. SMP handles programs using multipleggsmrs sharing a common OS. There is a
single copy of the operating system that supervagiesf the processors and shares everything

symmetrically among them. The processors share meamal a bus as shown in Figure 2. [5]
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Figure 2: Typical Symmetric Multiprocessing SystenmiLayout [6]

AMP is the employ of more than one CPU with a djtirole with each kernel running
exclusively. This means each processor shares #me sphysical memory, but have
independently running OS on each core. With thithow, processes can run on either processor.

Figure 3 shows a typical AMP system layout. [7]

Figure 3: Typical Asymmetric Multiprocessing SystemLayout [8]
There are heterogeneous and homogeneous procgstsans. A heterogeneous system is the use
of different processor cores with one for generabpse work and the other for such things as
DSP. The advantage of this approach is the albdityatch processor cores with features that are
appropriate for on-chip tasks applications. Tailgra processor core to a specific task forces the
processor to limit its number of abilities to no iadhan are required by removing unneeded
features from each processor. The heterogeneoignde=eds a different software-development
tool set, which would include a compiler, assemldiebugger, instruction-set simulator, and OS

for each of the different processor cores usetiensystem design. [9] Heterogeneous processors



generally do not use SMP due to the processorsbaitg capable of executing identical

instructions from the same copy in memory.

Homogeneous processors, such as Xilinx's Zynq ERPtwo ARM cores, run the same code
from a single copy in memory using SMP. These @soes can also be used with AMP creating
a more independent processor. In this case eackgsor can run different code from its personal
local memory. AMP with the Xilinx Zyng EPP, for exrale, could utilize a RTOS on one

processor while running Linux on the other or a Téduld be resident on both corfl]

Multicore processing can be somewhat complex atmahiating, so it is important to have an OS
developed that offers ease of use independentefsyistem configuration. OSs can provide
autonomy to process load balancing and handlingchvizilleviates concern about how the
processors are explicitly handling the workloadm80o0OS are designed to automatically run
processes on any available processor to providesgeaent mapping of multithreading on a
multicore architecture. [2] Multithreading is thbility of efficiently executing multiple threads
running on a single core by utilizing thread-levahd instruction-level parallelism.
Multiprocessing involve the use of multiple compleCPUs in a single system. These
complimentary systems can sometimes be combinesistems with multiple multithreading

cores. [10]

FPGAs are used to develop soft-core processorathaised for various embedded applications.
The use of FPGAs as soft-core processors sucle&2thit Xilinx MicroBlaze have some utility,
but have various complications including synthesjzithe various interconnects on the
programmable fabric. The challenge of using FPGAith vembedded CPUs lies in the
communication between the processor and PL. Usipgeessing platform, a processor centric
design, compared to an FPGA has various advanthgdise most recent version of the FPGA

architecture by Xilinx, the Vertex FX FPGA seriézpwer PC (PPC) cores are used as hard



Intellectual Property (IP). [11] IP is an algorittonfunction that is provided to designers through
licensing from software developers. These preddfifuanctions are intended to save time by

prebuilt solution for such things as processorstarglinterfaces. [15]

A FPGA centric desigh means that the FPGA is thetenaand PPC is the slave. Development
requires the configuration of the FPGA in order use the CPU cores and cannot boot
independently of the FPGA fabric. On the other haheé Zynq EPP includes a Dual ARM

Cortex-A9 as hard IP. This means the ARM PS is rifester and the FPGA is the slave.

Additionally, the CPU can boot without poweringaanfiguring the FPGA. [11]

The Zynqg EPP utilizes the AMBA AXI4 interconnectsiis System-on-a-Chip (SoC) design. An
embedded designer needs to understand how toeutiiz hardware they are given. The bus
interconnect, in any system, is the communicatiok between hardware. To understand how to
utilize the AMBA AXI4 interconnect, we can look ptevious bus architectures and methods
used to handle multiprocessing systems. The Mudtiban asynchronous bus standard developed
by Intel in 1974. The Multibus was designed to bbust and became a widely used industry

standard in the 1980s with systems still curreafgrational. [12]

The Intel MULTIBUS Il was designed to address theltiprocessing problem caused by the
increased demands for processing power. The MULBBUI was designed to improve system
performance and reduce the complexity of multipssogg systems. It introduced the mechanism
of message passing to improve the performance sfystem and in doing so simplified
multiprocessing system implementations. The medmarihat supports this message passing is

the Message Passing Coprocessor (MPC).

There are various ways to implement a multiprocgssiystem. Traditionally, processors can
share data using the bus and a common memoryTrsamemory is either available globally or

dual-ported into the local memory of one proceskldt] Another method for data sharing is to



have a host CPU and a disk controlling with comroatidn done through message passing. The

use of the MPC in this manner is demonstratedguriei 4.

HOST DISK CONTROLLER |
CPU CPU
MEM MEM
DMA DMA E a
MPC MPC
I/F \/F

MULTIBUS® Il PARALLEL SYSTEM BUS

Figure 4: Message Passing using the MULTIBUS Il [13

Depending on how this message passing is implemgetite bus can become a bottleneck.
However, efficiently and effectively getting dataickly into the local memory of the second
CPU can achieve performance improvements. The MBUH Il supported all of these methods

for communication.

The design objectives behind using the AMBA for SdE€signs is to improve processor
independence by encouraging modular system designjevelopment of reusable libraries for
peripherals and system IP and on-chip communicdliat minimizes silicon infrastructure while
maintaining low power and high performance. [1AESe IP blocks address the various needs of
embedded designers with pre-designed cores thabeamplemented on Xilinx FPGA devices.
[15] For example, there are IP blocks designedXitinx Targeted Design Platforms (TDP)
provided by Xilinx and its Alliance Program MembeT®Ps are development kits released with
boards, Integrated Software Environments (ISE) @reSluite tools, IP cores, reference designs,

and designer support for initial application deypat@nt. [16]



The System Chip Design Laboratory (SCDL) is a nedetacility of the Department of Electrical
and Computer Engineering at Temple University’si€ly@ of Engineering. SCDL was started in
1999 and is a descendant of the Advanced Proc8ystems Laboratory (APSL) established in
1987. The laboratory worked with the Multibus Il ltijprocessor computer system which utilized
the Intel iIRMX Il real-time multitasking operatingystem. The SCDL pursues innovative
investigations in the SoC design methodology utitizhard processor IP cores, configurable SoC
and soft core architectures on FPGAs, on-chip lguarbitration architectures, and heterogeneous

multiple processor RTOS. [38]

1.2 Research Objectives

The objective of this thesis is to develop embedg@srating system support for the Xilinx Zynqg
EPP with multitasking FreeRTOS. Doing so will deyelan understanding of effectively
implementing FreeRTOS on the platform and to predbenchmark results that can be used
evaluate the AMBA AXI4 interconnect performance.eTRhealstone real-time benchmark will
be used to perform this benchmarking. This willyide embedded designers with a platform for
further implementation on the Zynq EPP. This worll Wwe added to the Xilinx and Zynq
Evaluation & Development (Zed) board websites essaurce to inform and strengthen the Zynq

community.

1.3 Organization of the Thesis

The thesis is organized as follows. A backgroungiven in order to lay the foundation for this
work. The ARM Architecture is discussed, followegl An outline of the ARM Cortex A9

architecture. AMBA is described to develop an ustierding of its associations with the Dual
ARM processor. The Zyng EPP architecture is disstisgong with Zyng EPP platform which is
utilized on both the Xilinx Zyng Evaluation Boarddathe Zed Board. A brief discussion about

RTOSs followed by a discussion of implementing RE@S is provided. The Rhealstone



Benchmark's use and implementation is revieweditarapplication to the work in this thesis is
discussed. The Design Tools used to develop oZyheg EPP is review and key software and
hardware design elements are discussed. The tessiks are discussed and concluded. Finally,

the framework for future work with the Zynq EPRliscussed.



CHAPTER 2

BACKGROUND

2.1 ARM Architecture
2.1.1 Introduction

ARM is known for its high performance for low prie@d low power consumption. The reduced
instruction set computer (RISC) instruction sehdscture (ISA) of the ARM is not designed to
produce the most powerful processor, but to craapeocessor capable of powering the latest
technologies at a price that could be used in lost-@rocessing systems. The advantages of
RISC stemmed from the concept that performanceddoglimproved through smaller chip sizes
with shorter signal paths implying shorter instroictcycles which results in a faster processor. A
smaller die size is a result of the RISC chip besngpler and therefore requiring fewer
transistors to implement the smaller instruction $4SC was intended to shorten the design
process through smaller chips with fewer instrucionaking the design less complicated and

ultimately taking less time to complete and deljlig]

The history of the ARM resides in the United Kingdevith Acorn Computers Ltd. ARM was
established in Cambridge, originally know as AcBISC Machine, and developed its first ARM
chip between 1983-1985. The company became poputi@n Acorn's British Broadcasting
Corporation (BBC) Microcomputer which was widelyedsin UK classrooms during the 1980's.
In 1985, the ARM1 was released and focused on imgatenstruction sets in order to improve

and maximize performance of the systems usin@ 1. [

The Archimedes home computer launched in 1987 waditst commercial product using the
ARM. It utilized the ARM2 8 MHz processor and wdee tfirst RISC processor available in a

low-cost PC. The intent of these first two processmas to offer quality performance in a low-



cost system. Since Intel and Motorola-based computempeted on the market with their high-
end personal and workstation computer systems Bl dased systems were overshadowed.

[17]

The release of the ARM3 in 1989 was designed tarong the performance of the ARM by

including a 4 Kbyte on-chip data and instructioche This 25 MHz processor could run at a
higher clock rate due to the denser fabricatiorthef chip compared to its predecessors and
inherently improving the overall performance whilging the same support chips and low cost
memory as the ARM2. In 1990 the ARM2aS, a statisioa of the processor, added low power
consumption to the list of ARM feature which opentBM to the personal hand-held and

communications devices market. Though this spepifacessor only reached prototyping stage

of mobile devices, it sparked greater interesteRIBC and the ARM family. [17]

With financial growth of Acorn and the increasingniand for RISC processors, an agreement
was made between Acorn, VLSI Technology and Applas resulted in the foundation of ARM
Ltd and the name change to the Advanced RISC MadAiRM). ARM Ltd licenses its designs
to chip foundries for royalties rather than estlbtig its own fabrication facilities. VLSI
Technology, who had built all previous ARM chipsasvthe first licensee. ARM Ltd's first
development after the ARM3, was the ARM6 which unietd full 32-bit addressing. This was
designed to meet the requests of its new partrgpleA [17] ARM, since then, has continued its

growth in various avenues including its ARM Corf&X being used on the Zynqg EPP.

2.1.2 ARM Cortex A9

ARM Cortex™-A9 processor is available as eitherirgls core or configurable multicore
processor with either synthesizable or hard-macnplémentations. The ARM Cortex-A9
processor is available as a single core or MPCardeinwith up to four cores. MPCore is an

integrated SMP or AMP with multiple processors isirggle device. The Cortex-A9 processor is

10



a power efficient, high performance option for astegensitive system with power or thermal
constraints. Full virtual memory capabilities areyided by the L1 cache and implemented byt
the ARMvV7-A architecture. It can execute 32-bit ARMtructions as well as 16-bit and 32-bit
Thumb instructions and 8-bit Java bytecodes. [18life 5 shows the Cortex-A9 Dual MP Core

Architecture.

ARM CoreSight™ MulticoreDebug and Trace Architecture

FPLMNEON  PTM IIF FPLWNECN  PTM UF
Cortex-A3 CFU Cortex-A3 CRU
|-Cache  D-Cache I-Cacha D-Cache

Generic Snoop Contral Unit (SCU)

Accelerator
Interrupt Gontral Coherency
and Distribution | Cache-2-Cache Part
Tranfers
Advanced Bus Interface Unit
Primary AMBA 3 84-bit Interface Sacond IIF with Address Filtering

Figure 5: Cortex-A9 Dual MP Core Architecture [19]

The processor was designed with high efficiencynind with dual-issue superscalar, out-of-

order, and a speculating dynamic length pipeliee Tortex-A9 architecture supports 16, 32 or
64KB configurations of four way associative L1 cestand an optional L2 cache controller up to
8MB. The Cortex-A9 has physical IP available fosideers. The processor comes with the ARM
Development Suite 5 tools and CoreSight Debug &d@ni#. CoreSight is an on-chip debug and
real-time trace kit for SoC designs utilizing ARMopessors to optimize debugging the system.

[20]

The Cortex A-9 MPCore with 2 cores integrated asl lld component on the Zyng EPP is a 800-
MHz dual-core processor that supports both SMPAMME. Each processor core has a dual-issue

superscalar pipeline, the NEON processing engirsingle- and double-precision floating-point

11



unit (FPU), and 32-KB instruction and 32-KB datecla with cache coherence. The ARM
Cortex-A series processors utilize NEON technolagyich is a 128-bit Single Instruction
Multiple Data (SIMD) engine used to process multiilaeformats. [21] SIMD is an extension to

the architecture of the ARM providing operationesdions for registers and floating-point. [22]

The Cortex-A Series also includes a Memory Manageromit (MMU), a Snoop Control Unit
(SCU), shared 8-way 512-KB associative L2 cachaege interrupt controller, Direct Memory
Access Controller (DMAC), and a 32-bit general mag timer on the chip. [19] The ARM
Cortex-A9 processor, when combined with embeddedplperals, interfaces, and on-chip
Memory (OCM), create a Hard Processor System (HE&)necting the HPS and FPGA of the
SoC with a high-bandwidth on-chip backbone providege bandwidth for sharing data between

the ARM processor and hardware accelerators witt@r-PGA fabric.

2.2 AMBA Bus

The ARM Cortex A9 AMBA 3 located on the chip is thackbone for communication within the
SoC. The AMBA has been widely used as an on-ch#pdvahitecture in many SoC designs. The
AMBA has since exceeded its initial design potdnaad has gone beyond the use in
microcontroller devices. The AMBA 1 consists of tAdvanced Peripheral Bus (APB) and
Advanced System Bus (ASB). In the second generafiMBA 2, ARM added a single clock-
edge protocol called AMBA High-performance Bus (AHBAMBA 3, the third generation
AMBA, reached higher performance interconnects digirzg the Advanced eXtensible Interface
(AXI). It also included the Advanced Trace Bus (ATBhich was designed to work with the

CoreSight on-chip trace and debug tools. [24]

The AMBA 3 specifications replaced AMBA 2, but AMB2 peripherals can still be used on
AMBA 3 based systems. The protocol specificationtted AMBA family is an ARM open

standard for on-chip buses and provides solutiorSaC interconnections and functional block
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management for embedded design with multiple psmasand multiple peripherals. [28he

AMBA 3's interface protocol specification encompsssll the required on-chip data
traffic requirements. These requirements includghhdata throughput from data
intensive processes, low bandwidth communicatiaih Vaw power and gate count, and

on-chip testing and debugging. [24]

AMBA 3's AXl is an interface and a protocol, bunist a bus. There is no bus arbitration because
it is utilizes point to point connections. [53] AXrovides support for data traffic throughput with
five unidirectional channels and out-of-order dnsaction capabilities. This allows for high
speed operations through the pipelined intercommest simultaneous reading and writing
transactions, and efficient high latency periphetgdport and bridging between frequencies for
power management. The AHB interface enables hidjciericy interconnects between single
frequency subsystems of simpler peripherals wherAI is not need. The structure of the AHB
is a fixed pipelined and an unidirectional chanalédws for back compatibility with AMBA 2

peripherals. [24]

APB provides low bandwidth transaction support ¢oess necessary configuration registers in
peripherals as well as data traffic in periphessith low bandwidth. This interface is highly
compact and low power isolates data traffic frone tAHB and AXI high performance
interconnects. ATB adds a data trace interfacedfta diagnostics in a trace system. This
provides debugging capabilities due to the tracepmments and bus sitting in parallel with

interconnects and peripherals. [24]

2.3 Zyng Extensible Processing Platform
2.3.1 Introduction

The Zynq EPP 7000 family of devices combine thelWare programmability of an FPGA and

the software programmability of a processor. Theragiew of the hardware is depicted in Figure
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6. The Zynq EPP platform's PS includes the Dual ARbMtex-A9 MPCore that utilizes 32kB
instruction and data L1 cache per core, sharedB512kcache, FPU and NEON media engine.
The memory interfaces include 256kB OCM in additio™NAND Flash and NOR Flash Memory
Controller which includes DDR2, LPDDR2, and DDRZriBherals include Queued Serial
Peripheral Interface (QSPI), USB2.0, GbE, CAN, SPUiversal Asynchronous Receiver and
Transmitter (UART), SPI, 12C, General Purpose W&P[O), 12bit 1 Mbps ADC, AES and SHA-

256. [25]

There are four available models of the Zynq EPRgdesd for various applications. The available
FPGA types for each of the model types include Ahiex-7 for Z-7010 and Z-7020 and the
Kintex-7 for Z-730 and Z-7045. The FPGA sizes vand include logic cells that range from
30k-350k, block RAM ranging from 240kB-2,180kB, DSHces from 80-900, and user 1/Os of
150-400. The Kintex-7 devices also have eight PQir&ss2 and 12.5 Gbps Transceivers. Quick

EMUlator (QEMU), a virtual platform, is used foretlmodel of the processing subsystem. [25]

Processing System

Static Memory Confroller Dynamic Memory Controller Programrna

Quack-SP1, NAND, NOR DDR3, DDRZ, LPDDR2 2
Logic:
; System Gates,
SIP‘\ AMBA® Switches AMBA® Switches DSP, RAM
. o I -
1t
I b I
. CAN I ngine
v i ASMPCore™
PID

Mux . UART I - 32/32K8 110 Caches
(H
5010
. with DMA I
2k USE
. with DMA I
2x Gigk

with DMA

Multi Standards 1/0s (3.3 & High Speed 1.8V)

Multi Standards 1/0s (3.3V & High Speed 1.8Y) Multi Gigabit Transceivers

Figure 6: Xilinx Zyng-7000 Extensible Processing Rtform Architecture [26]
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Xilinx implemented AMBA on the Zynq as two switchatrices. The AMBA AXI interconnect
exists in two areas on the Zyng EPP. One is groapednd the DRAM controller and the other
is used for general peripherals. There are twocke# on the peripheral side. The first has one
connection for a hard static memory controllerheigard I/O controller blocks, five connections
for the CPU cluster, and four stubs that end atptugrammable fabric. The second has five
connections ending in the fabric, two connectiamsthe hard DRAM controller, and two CPU

ports. [27]

One of these five ports supports the Acceleratdne@ence Port (ACP). This port provides the
ability for the accelerator to snoop the proces$aster’'s caches, but not the cluster's OCM so a
CPU task could leave a control and data block iohea From here, an accelerator in the
programmable fabric can read the block directiyrfrcache and therefore avoiding a write-back
to DRAM. This protocol is not symmetric and therefdhe accelerators are not fully coherent.
This is because the CPU reads and writes do napsnm@mory in the fabric. The AMBA /O

ports, the DRAM controller accessible AXI portsda®CP provide the Zynq EPP with a range of
programmable fabric structure design possibiliti€ee current available hardware platforms
include the Xilinx Zyng-7000 ZC702 Evaluation Kihe Xilinx Zyqn-7000 EPP Video Kit, and

the Zyng-7000 EPP ZedBoard. [27]

2.3.2 Xilinx Zyng-7000 Evaluation Kit

The Xilinx Zyng-7000 ZC702 Evaluation Kit is a Kitom Xilinx that includes a silicon board
with the Zyng EPP, development tools, IP, and detaof reference designs. An image of the
board is shown in Figure 7. It provides abunda@t ékpandability for embedded designers to
develop upon. It is also backed with OS supportianthe ARM community. The kit is provided

with the XC7Z020-1CLG484CES device Zynq chip, desgites, various cables for scoping the
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board, 8 GB SD card that contains the provided Xistartup kernel, and documentation with

step-by-step guides. It also contains all schematic PCB files and design examples. [28]

12C Program-user User Push-buttons,
Clock 3.3V LVDS Active High
FMC1 LPC connector Xilinx XADC Header FMC2 LPC Connector

Quad SPI Flash Memary(1Gb) Eight-user LEDs

SD Card Interface Connector User 2-pole DIP Switch

Configuration Mode Select Switch
9 Zynq-7000 Extensible

Processing Platform (EPP)

System Clock, 200 MHz, 2.5V LVDS
Power Management System
(bottom and top of board)

Power On/Off Slide Switch

FPGA PROG Push-button

12C Bus Switch

12C Real-Time Clock (RTC)
CAN Bus Transceiver

DDR3 Component Memory (1 GB)

RGMII Ethernet PHY Oscillator,
26.000 MHz

USB JTAG Module with integrated
USB Mini-B Connector

10/100/1000 MHz USB 2.0 ULPI Transceiver, 2x6 and 1x6
Ethernet PHY, USB Mini-B Connector PMOD /O Header
RJ45 with Magnetics
Ethernet Status USB-to-UART Bridge, 2x6 Male Pin I/O
LEDs USB Mini-B Connector Header driven from

Figure 7: Zynq 7000 Evaluation Kit [28]

2.3.3 ZedBoard

The ZedBoard is a community driven approach oiayxeq EPP by Silica and Digilent. An image

of the board is shown in Figure 8. The conceptkhihe board is to be designed in an open
source community manner. The board contains van@sgpherals with extension options that
include a FPGA Mezzanine Card and peripheral maduking the Peripheral Module (Pmod)
connector to connect components such as an ADC,,[3&@sors, Switches, Displays, RF, WiFi,
Bluetooth, or Storage. The ZebBoard website, Zed®Bogy, is where all the collaboration

material is maintained. [29]
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Figure 8: ZedBoard [30]

2.4 Real-Time Operating Systems

An OS is an abstraction of hardware in a system fravides an interface for servicing
applications. The OS replaces the direct interfadeardware with program functionalities a user
of the system wants or needs. It supports the hasctions of a computer system and makes the
system easier to maintain, faster, and easier ite @applications. When designing an OS various
parameters are considered including performanseurees management, security, marketability,
and failure tolerance. It is responsible for mangdiardware and software resources. Hardware
resources include processors, memory, and 1/O dsvisoftware resources include programs and

data files.

An OS is comprised of layers that create an enwilemt that hides and simplifies the underlying
hardware by providing sets of commands to meetisiee's needs. Though the structure of the OS
kernel can vary, they all attempt to provide therugith a platform in which to utilize the system
hardware. Many OSs make multiple programs and pemse appear to run at the same time

through multitasking. However, a processor can tialigdle one thread of execution at a time. A
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scheduler is used to manage the processes exeoutitng processor and to create the illusion of
simultaneous execution through a process call taiging and rapidly switching between

program threads. [31]

The type of OS can be defined by its schedulertavd it decides which process threads to run
and for how long. A multi user OS, like Unix, wiinsure processing time is shared equally
between users. A desktop type OS, like Windows,ahasheduler that ensures that the system
remains responsive to users when needed. A RTOISsIgler is designed to provide predictable
execution patterns to systems that have real tegeirements. Embedded systems often have
these demands and means the system must resp@andiven event within a strictly defined

deadline. This means that the OS's scheduler nmusteberministic in order to predict the real

time requirements of the system. [32]

FreeRTOS uses a traditional real time schedulalloying the user to assign a priority to each
thread to determine execution. This scheduler, dbase the priority, knows which thread of
execution to run next. FreeRTOS is a versatilescta#sRTOS designed for many applications
including being implemented on small microcontnale=reeRTOS is designed for systems that
do not require a full RTOS implementation, manyeinin the design of embedded applications,
or do not have the ability to run a full RTOS. R@®S only provides the core real time
scheduling functionality, inter-task communicati@nd timing and synchronization primitives
and would more accurately be referred to as atiesd kernel. If additional functionality is

required, they can be included as add-on compon@3s

2.5 FreeRTOS

FreeRTOS is a RTOS from Real Time Engineers Ltdteriin C and, as of October 2011,
supports 31 processor architectures. FreeRTOSlightweight real-time kernel designed for

small embedded systems that require deterministia@al-time responsiveness to system events.
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Lightweight means it is a less complex OS with aidanstruction set designed to be faster and
not as heavily resource dependent. Key featureFreERTOS include an Application
Programming Interface (API), message passing, Yireard counting semaphores, mutual
exclusion with priority inheritance, pre-emptiveheduling, co-operative scheduling, and round
robin with time slicing. Round robin is a simpleneduling algorithm for process time slicing in

which each process is assigned equal portionsesfution time and in circular order. [33]

With the growing complexity in embedded design tlmehe availability of more memory and
various communication peripherals, there is anrighieincrease in software complexity. The
inherent benefit of using an OS kernel is cleaeeRTOS is free and is released to its users as
open source. FreeRTOS implements its open sourcelégsing moderated versions instead of
pure open source. This ensures that only softwageated by FreeRTOS is used in the official
release. There are, however, community contribfitesl that are separate and available as open
source. FreeRTOS's license model is designed artenitiea that code on the application side
that uses FreeRTOS remains closed, while codartbdifies or extends the kernel itself is open

source. [34]

FreeRTOS supports several Xilinx products includMgroblaze, PowerPC, and the Zyng.
Microblaze, which is a 32-bit soft processor cooetpruns on various Xilinx FPGA's including
the Spartan-6 and Virtex5. PowerPC 405/440 aregaraible processor cores that run on Virtex4
and Virtex5 FPGA's repetitively. The initial releasf the FreeRTOS is available for the Zynq in
October 2011. The original port was for the Xilidyng EPP and was developed to run on the
Zynq 7000 EPP based ZC702 board and implementeersion 14.1 of the Xilinx ISE Design
Suite. As Xilinx releases newer versions of theisign suites, the ports are updated and released

accordingly. [35]
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2.6 Rhealstone: Real-Time Benchmark

The Rhealstone Benchmark was proposed by RabindfarPand Kent Porter in 1989 and was
designed to be a metric for comparing the perfooaanf real-time multitasking systems
independent of any features found in any CPU, Ibcisitecture, or a specific OS or kernel. [36]
At that time, there was the Whetstones and Dhrgstdhat benchmarked code generated by
compilers and the throughput of hardware platfodoog,no equivalent measurement for real-time
systems. Rhealstone was a proposed standard fectiolejy measuring real-time performance

and summarizing the components of performance.

The Rhealstone metric mainly helps embedded deeedogelect real-time systems appropriate
for a specific application. It should be noted tlaat encompassing real-time solution would
consist of the system, the application software] arternal devices, so Rhealstones doesn't
measure the quality of the complete solution, Imgtdad a measurement targeted specifically
toward a multitasking solution. The scope of Rhealss is with complex systems running five to

thirty concurrent processes. It will be adoptetéaused with a multitasking AMP system.

The Rhealstone takes into account that all rea-@pplications are unique. One system may be
highly interrupt-driven while another relies hegviin message-passing among tasks or another
that fights for resources. The Rhealstone figura sim obtained from six categories of activity
most crucial to the performance of real-time systeifhe categories include task switching,
preemption, interrupt latency time, semaphore $ihgff deadlock breaking, and intertask
message latency time. It uses coefficients that system designer assigns weight to each

Rhealstone component based on relative importance.
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2.6.1 Task Switching Time

Task switching time is the average time the sydteas to switch between two independent and
active, not suspended or sleeping, tasks of equatity. Task switching is synchronous and
nonpreemptive and is an important measure of aryitasking system. This metric is influenced
by the host CPU's architecture, instruction set] &amtures and is designed to assess the
compactness of task control data structures andeffieiency with which the executive
manipulates the data structures in saving and riegtocontexts. Task switching time,
additionally, measures the executive's list manageroapabilities. [36] A demonstration of this

performance parameter is shown in Figure 9.

Task number

Task 3

Task 2§

Task 1

— * Time
iy Ly

™
Task switch time = n~ = & = O

2

{ Priority of task 1 = lask 2 = task 3 )

Figure 9: Rhealstone Benchmarking: Task-Switching ime [37]

2.6.2 Preemption Time

Preemption time is the average time it takes adrighiority task to take control of the system
from a running task of lower priority and usuallgcars when the higher-priority task moves
from an idle to a ready state in response to sottexr@al event. In other words, it is the average
time the executive takes to recognize an extervahteand switch control of the system from a
running task of lower priority to an idle task dfjher priority. A demonstration of preemption

time is shown in Figure 10. Preemption and intertapency, which is discussed next, can be
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considered most significant real-time performanaeameter since multitasking systems assign

task priorities and even dynamically through aglans. [36]

Task number

Task 3
{high}

Task 2 B
{medium

Task 1
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: * Time
4 %

Preemption time = A& = A

1 2

Figure 10: Rhealstone Benchmarking: Preemption Tim¢37]

2.6.3 Interrupt Latency

Interrupt latency, shown in Figure 11, is the tilmetween the CPU's receipt of an interrupt
request and the execution of the first instructiothe interrupt service routine. Its reflected by

the delay introduced by an executive and the psmresnd not delays occurring on the bus or

interfaces to external devices. [36]

Interrupt
Handler

Task

Time

Note: CPU recsives intetrupt at time "t*

A = interrupt latency

Figure 11: Rhealstone Benchmarking: Interrupt Latercy [37]
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2.6.4 Semaphore Shuffling Time

Semaphore shuffling time is the delay between ldgaelease of a semaphore and the activation
of another task blocked on the "wait semaphorethitiite. When implementing this, at least
three tasks with different priorities should beiaetand no other tasks should be scheduled in
between. The semaphore shuffling time measuresvitshead associated with mutual exclusion.
This occurs when multiple tasks compete for the esagsources. Semaphore based mutual
exclusion provides a way of ensuring that a noresi@e resource only serves one master at a

time. [36] Semaphore shuffling time is shown inuFig12.

Semaphoral_ R E [ Trema :
Ownership : C =] L]
*Time
By Dy A1 By
A Lsgend:
A+ &, = Semaphore shuffle time T « task requests semaphore
s = lask relinquishes semaphore

Figure 12: Rhealstone Benchmarking: Semaphore-Shu& Time [37]

2.6.5 Deadlock Breaking Time

Deadlock breaking occurs when a higher-prioritk tageempts a lower-priority task that holds a
resource needed by the higher-priority task andvib&ic measures the average time it takes the
executive to resolve this conflict. Deadlocks arecaanmon multitasking problem and are
sometime not handled effectively. This can be ablbg temporarily raising the priority of the
running task above that of the interrupting tastl dine needed resource is released by the lower-

priority task. The temporary priority is then lowedrso the new task can run. Deadlock breaking,
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shown in Figure 13, is the sum of times requireceBblve an ownership dispute between a low-

priority task holding a resource and a higher-fpiydask that needs it. [36]
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esource .
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Task 3 _ L3
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{macksm prionity} H .n:,
Task 1 - S P
(low priority) :
. = Time
1 aﬁ Legend:
. * = task requests resource
A1 + AE = Deadlock break time + = task relinquishes resource
A = task preemption

Figure 13: Rhealstone Benchmarking: Deadlock-BrealKime [37]

2.6.6 Intertask Messaging Latency

Intertask message latency, demonstrated in Figéréslthe delay within the executive when a
nonzero-length data message is sent from one deeskather. In order to measure it properly, the
sending task should stop executing immediately aftading the message and the receiving task

should be suspended while waiting for it.

= message latency
Task 2

Task 1

* Time

O

Figure 14: Rhealstone Benchmarking: Intertask Messge Latency [37]
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The intertask message-passing link must be edtabliat run time and if multiple messages are
sent on the same link, the receiving task getsaa@hto read an old message before the sending
task can overwrite it with a new one. This can drdbed with various mechanisms such as pipes,
gueues, and stream files which are usually provimechultitasking executives for intertask data

communication. [36]

2.6.7 Calculating the Rhealstone Performance Nuneip

The measurement of the six performance categoregde embedded designers with a well
rounded analysis of the system performance. Rloe@stlso makes it easy to compare systems
by generating a single real-time value. All of tenchmarks must be first represented in seconds
(t1-t6). Then, added together and the averageewh found. The number is then inverted to get
the Rhealstone performance number that is repmdenith the units Rhealstones/second as
shown in Equation 2.1. [37]

(t1+t2+t3+t4+t5+t6))_1
6 Rhealstones/Sec

Rhealstone Performance Number = (

(2.1)

The above performance number is a method to compgseems on a general level by
considering all the parameters to be equally ogugirif an embedded designer needs to evaluate
a system based on a specific category, for exaraplepplication that is heavily interrupt-driven
a weight can be chosen before calculating the peeince number. This method is referred to as

“application specific Rhealstone” and is shown gsdion 2.2. [37]

2.2)

Application Specific Rhealstone __ ((n1t1+n2t2+n3t3+n4t4+n5t5+n6t6))_1
Performance Number ny+ny+nz+ng+ns+ng Rhealstones/Sec

Nonnegative real coefficients (n1-n6) for each gatg are set based on occurrence within the
application. If interrupts occur 5 times more thask switching, its coefficient should be 5 times

larger. Similarly, if a category does not happealathe coefficient is set to zero. For examfile,
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there is no inter-task message passing performdtidogpplication, its coefficient should be set
to zero. The application specific Rhealstone Parémrce Number is then again calculated by

inverting the average. [37]
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CHAPTER 3

DESIGN TOOLS

3.1 Introduction

Complex embedded systems require powerful and welleloped design tools. With an
embedded system such as the Zynq EPP, embeddatkersyare faced with complex design
projects that have both hardware and software dgsigblems. Using an FPGA in the design
makes the system even more complicated and congbeanh individually designed subsystem
into one complete system is again a difficult tagkth the Zyng EPP and the addition of the
ARM dual core as Hard IP, Xilinx has developed & sk design tools that manage this
complexity and help make the design process aslsirap possible. The broad array of
development system tools provided by Xilinx is eotlvely called the ISE Design Suite. The
Xilinx ISE Design Suite 14 is the current versiosed for designing on the Zyng-7000 All

Programmable SoC platform. [39]

3.2 Xilinx ISE 14

The Xilinx ISE Design Suite is the current devel@mhtool set used to design every aspect of
the Zyng-7000 All Programmable SoC. There are ctiyehree editions, the Logic, Embedded,
and DSP, of the ISE Design Suite and are all iredluds part of the System edition. [40] The
Xilinx ISE Design Suite 14.2 Embedded Edition wasdifor development on the Xilinx ZC702
Rev C Evaluation Board for this thesis. Xilinx Va@is the next generation of this design suite
and will be replacing the Xilinx ISE for future Xik products. The first generation of Vivado did

not support the Zynq EPP, but will support it ie fature.

The Embedded Edition of the ISE Design Suite inetuthe PlanAhead design analysis tool,

ChipScope Pro, and the Embedded Development KiKJEDhe EDK consists of the Xilinx
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Platform Studio (XPS) and the Software Developn&nh{SDK). [39] Aside from the ISE, Tera

Term was also used for the design process. Figoidepicts the block diagram for the software

packages within the ISE Design Suite and how tinésract with each other. PlanAhead is the

initial development tool for starting an embeddessign. Planahead works with the EDK to

design the hardware and software system.
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Figure 15: Design Tools Block Diagram — Xilinx ISEL4

3.3 PlanAhead

Tera Term

I

Zynq
Evaluation
Board

The PlanAhead design and analysis tool is useddovarious hardware sources and manage the

link between the hardware and software design #sp#cthe project. It helps with FPGA 1/0

assignments and advanced FPGA layout planningtimize the connectivity between the PCB

and FGPA. [40] PlanAhead allows the embedded designcreate a project with an embedded

processor system as the top level and works wahEDK to design the embedded system. The

hardware system is created using XPS and imporéek Into the PlanAhead project. The
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PlanAhead project is then exported to the SDK teelbp software for the hardware design that

was just created.

When PlanAhead executes, it allows the embeddedraesto create a new project or open an
existing one. A Register Transfer Level (RTL) puaijes created to begin the design in
PlanAhead. The RTL Project allows the embeddedydesito add sources, generate IP, and run
an RTL analysis. The designer starts by settinthegype of hardware board the project is being
design for. For this thesis, the Zynq ZC702 EvatuaBoard was selected. PlanAhead is then
used to import various sources into the projectalt add constraints such as a User Constraint
Files (UCF) which specifies how the logical desinstraints are implemented on the target
device [54], add design sources such as the HDlldgeror an Embedded Source for setting up
the PS peripherals and various other settings APkeaid also generates the bitstream’s bit file for
programming the PL in the SDK. [51] Figure 16 showmsv the project files of PlanAhead

interact with the rest of the ISE Design tools.
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Figure 16: Design Tools Block Diagram — PlanAhead
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When an embedded source is added to the projercdgnizes that an embedded processor
system was created and starts XPS to setup thel sddece. When the designer is finished with
XPS, the design is updated in the PlanAhead tBodm here the embedded processor system can
be created as the top level of the system by agatiTop HDL with Verilog. The entire project

is then exported to the SDK. [39]

3.4 Embedded Design Kit

The EDK is used to design a complete embedded gsocesystem for implementation on a
Xilinx hardware device. It assists designers indihare and software application design,
debugging, and execution. The design can be ruth@mestination boards for verification of a
working design. The EDK includes hardware IP, didvand libraries, and GNU compiler and
debugger for C/C++ software development for the ARbBrtex-A9MP processors in the Zynq
PS. It also provides documentation and sampleitlitorojects for understanding the basics. [39]
The tool kits included in the EDK are the XPS amKSWithin these two kits are various tools
including the Base System Builder (BSB) Wizard,inél Microprocessor Debugger (XMD) and

GNU Software Debugging Tools, Simulation Model Gatien Tool (SimGen), Create and
Import Peripheral Wizard, GNU Software Developmeéraols, Library Generation Tool

(LibGen), Bitstream Initializer (Bitlnit), and thdardware Platform Generation Tool (PlatGen).

[40]

3.5 Xilinx Platform Studio

XPS provides a development environment for desgtie embedded PS’s hardware. XPS is
primarily used for setting up the processor, pesiph and interconnection configurations for the

embedded processor hardware system. It's designedie it easy to add desired IPs and create
port connections for components like the clock eewkt. The XPS project can be designed from

the ground up using a blank project or the BSB wizzan be used to add default peripherals to
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the fabric and to automatically select a defaultfiguration for the PS 1/O interface. After the
BSB is used, the Zyng EPP PS block diagram is aygal in XPS. This allows the designer to
click on any of the configurable green blocks arakenconfiguration changes. The configuration

process of XPS is shown in Figure 17.
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Figure 17: Design Tools Block Diagram — XPS

XPS creates hardware platform information in théinXi Microprocessor Project (XMP) file
format. [51] This file includes information abodtet PS configurations including GPIO such as
MIO and Extended MIO (EMIO), and adds IP and infation about configuring the PL in

PlanAhead. Closing XPS will update the currentlgoflanAhead session.

3.5.1 Base System Builder Wizard

The BSB wizard is part of the XPS and prompts t&igher to choose whether they want
assistants in setting up the basic configuratidrid The BSB helps create a working embedded

design for the evaluation board quickly by settipgbasic features and common functionality
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automatically. After setting up the basics of thstem, XPS and other ISE software tools can be
used to perform system customization. The firseaspf the design the BSB wizard sets up is
what type of interface is going to be used wheithee AXI or Processor Local Bus (PLB) which
is an old interface standard used by Xilinx. ThaBBBen needs to know what type of board the
system is being design for. Fortunately, this infation was imported from PlanAhead and if it
wasn't the correct board setup can be selectefiTI3® BSB closes and now allows the designer

to customize the existing design.

3.5.2 AXI Interconnection

The AXI bus interface IP cores started being usgitinx with their Spartan-6 and Virtex-6
hardware devices. An AXI system interface comes wtandard Xilinx IP and tool flows and
will be the standard interface used for all curr@md future versions of Xilinx products. The PLB
system is a legacy bus standard used by Xilinx FR&wilies up to the Spartan 6 and Virtex 6
and is not supporting newer FPGA families. This nsei is not suggested to start new projects
with PLB if they will be used on new Xilinx platfins. [43] The AXI specification is in charge of
providing a framework for defining protocols for wing data between IP. It does this using a
defined signaling standard. The AXI standard ipoasible for making sure that IP can exchange
data is moved across a system properly. [42] ThéakX other IP can be added to the PS design

to create a custom embedded system.

3.5.3 Hardware Platform Configuration

The Zyng's PS can be configured in various waysekviihe BSB is finished setting up the basic
system, the designer is provided with the Zynq BRIeessing platform configuration tab shown
in Figure 18. This tab allows the designer to agunfe 1/O peripherals, clocks, memory, and other

aspects of the PS. The green blocks are custoraeipabtions of the PS.
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Figure 18: Processing Platform Peripheral Configurdéion — XPS

Various IP can be added to the PS using the bagae tab. Once the peripherals are added to
the system, the ports tab is used to setup th@di@herals and clocks. There are 54 MIO that
can be used by the PS. If more I/O is requirecherdesigner wants to utilize the PL, the 1/0 can
be setup as EMIO for use by FPGA fabric. [53] OtieePS is configured, XPS is exited and the

design is updated in PlanAhead and ready to bereegto the SDK.

3.6 Software Development Kit

The SDK is used for developing the software defigrthe embedded project. The SDK is used
for C/C++ embedded software application creatiod aerification of software application

projects and was built on the Eclipse open-soutaredard framework. [40] The SDK provides
tools for software project management and givesesscdo the GNU toolchain for code

compilation and debugging. It can be used to rysliegtions on the target hardware board and
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create bootable images. The FPGA fabric can alswdgrammed when needed. Figure 19 shows

the relationship between the files within the SDK.
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Figure 19 Design Tools Block Diagram — SDK

The PlanAhead design tool exports the hardwardophatspecification files from XPS to the
SDK. These files include the XML, Microprocessorréi@are Specification (MHS), and the
ps7_init.c, ps7_init.h, ps7_init.tcl, and ps7_Hmitl files. The XML file is the main file used for
setting up the First Stage Boot Loader (FSBL) andrB Support Package (BSP). The MHS file
contains information about the interconnects betwde PS and PL. Ps7_init.c, ps7_init.h,
ps7_init.tcl, and ps7_init.html files are intermainfiguration files containing information on the
Zynqg EPP peripheral configurations. The ps7_irdhd ps7_init.h files contain settings for DDR,
clocks, plls, and MIOs to initialize the Zynq EPB.Prhe SDK uses these specified settings so
that applications can be run on top of the PShdufd be noted that here are some settings of the

PS that are fixed for the ZC702 evaluation boai@nnot be changed. [44]
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3.6.1 Board Support Package

A BSP is created using the SDK from the files intpdifrom PlanAhead. The BSP is the support
code for a board or hardware platform which helfs wmitialization during power up as well as
provides support for software applications to rartap of. The BSP is usually specific to the OS
and one is needed for each of the cores of theepsoc. [39] It is a collection of libraries and
support drivers that form the application’s lowéster of the software stack. A BSP must be
created before a designer can create or use aasefapplication by linking against it or running
on top of the software platform. It does this bingghe API that the BSP provides. [47] Multiple

BSPs can be used in the same SDK workspace.

3.6.2 Xilinx C Project

The SDK allows for application development of C/Cpfograms. For this thesis, the C
programming language was used. The C program caoobwiled with the SDK and an

Executable and Linakable Format (ELF) file is geted. This file is used to execute on the
processor. The SDK provides a basic Hello worldnagle to understand the basic of
programming the PS. The ELF file is also used @ating a bootable image for running on the

hardware device. All application development fas thesis was done in C.

3.6.3 First Stage Boot Loader

The FSBL starts after the device boots and is ldaid¢o the OCM. It is responsible for
initializing the PS configuration exported from XPBhe FSBL always runs on CPUO and is the
first software application that is executed. lused to initialize peripherals, programming the PL,
load a second stage bootloader, or load the apiplicELF file. The version of FSBL included in
the ISE Design Suite does not support multiple aatd&ELF file. This is because the FSBL
searches for a bit file. If a bit file is foundetkSBL writes it to the PL. The FSBL then loads one
application ELF file into memory and executesfitAMP is desired, the FSBL must be modified

so it continues to search for files. [52] The FS8ELF file can be stitched with the bitstream to
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create a Boot Image File (BIF) using the Bootgepliagtion. The create boot image wizard in

SDK creates a bootable image that can be flash#tetboard. [51]

3.6.4 Program FPGA

When the FPGA fabric and peripherals are utilizedtlte Zynq evaluation board, a Bitstream
BIT file is generated in PlanAhead using the b#atn generator. The bitstream is used to
configure the custom design logic in the PL by dmading the system.bit file to the FPGA

within the SDK. When only the PS is required, thtstBeam is not needed and can be omitted.
[44] The FPGA must be programmed anytime EMIO isdusAn example would be when using

the Pmod2 connector on the Zynq Evaluation Board.

3.6.5 XMD Console

The XMD console is useful for running and debuggamgembedded design application. It can be
used for debugging and verifying the system for Bhml ARM Cortex-A9 MPCore processor
running on the hardware board and is accessed tinenXPS or SDK. The hardware board is
debugged using a cycle-accurate Instruction Setul@bor (ISS). XMD provides a Tool
Command Language (TCL) interface that is used donroand line control and debugging of the
target board. Additionally, it can be used to @stomplete system by running verification test

scripts.

Debugging control of the target board in XMD candame from the supported GNU Debugger
(GDB) remote TCP or JTAG. XMD is used to downldhd FSBL to the evaluation board and
the application’s ELF file. The “connect arm hw”nomand allows the SDK to connect to the
ARM processor on the hardware board. The ELF file be downloaded to the processor using
the “dow” command. It can be ran and stop usingcttramands “con” and “stop” respectively.

When downloading a different ELF file, use “rst epessor” to reset the processor. [44]
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3.7 ChipScope Pro

ChipScope Pro is useful for on-chip debugging ofsAPdesigns and assists with in-circuit
verification. ChipScope Pro’s tools and IP coregviate embedded designers with a practical
ways to test FPGA devices. These tools integragsaorement hardware components with Xilinx
target boards for testing. The components commtaieih the tools and provide the embedded
designer with logic analyzing capabilities. The @tope Pro Serial /0 Toolkit, for example,
explores and debugs high-speed serial transcei@eddsigns on FPGAs. The Internal Bit Error
Ratio Tester core and associated software proaddsperform bit error ratio analysis on high-

speed serial transceivers channels implementedeoRRGA. [50]

3.8 TeraTerm

A serial communication utility is needed to transm@and receive information of the ZC702
Evaluation Board. The SDK has a built in seriaitigal utility available to the embedded design.
This utility functions well, but there are also iaus other terminal utilities that designers temd t
prefer. Tera Term is a free open-source terminailator and was used for the embedded designs
for this thesis. [41] The terminal is connectednirthe Host PC to the UART port of ZC702
Evaluation Board using a USB Type-A to USB Mini-Bbte. The standard configuration used
for Zyng PS was a Baud rate of 115200, 8 bits, arityg a stop equal tol bit and no flow control.

[39]
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CHAPTER 4

ZYNQ EPP OPERATING SYSTEMS

4.1 Introduction

Selecting the optimal OS for embedded applicatisriey in designing the system. It important
to understand the system’s design requirements wheonsing the OS as it will affect how
applications can be developed and ran. There avariety of OS able run on the Zc702
Evaluation Board. There are three platforms thésithis concerned which include Bare-Metal,
Xilinx’s Linux kernel, and FreeRTOS. The StandaldBare-metal” software system provides

low level control that is included with the XilinSE Design Suite.

Though Bare-Metal provides low level control, itnet technically an OS, but for all intended
purposes it still can run on one or both of the ARdles and process much like any other OS. A
bootable image of Xilinx’s Linux kernel comes prefpaged with the evaluation kit and is
discussed briefly. Finally, FreeRTOS is a well kmofvee RTOS that provides constantly
updated ports that run on the Zynq EPP. Since ymg-Z000 SoC has a dual ARM processor, a
decision must be made when utilizing both coresmbether to use SMP or AMP and which
OS(s) will be used for each of the cores. AMP vidtire-Metal on one core and Linux [46] or
FreeRTOS on the other or FreeRTOS on both corea few examples. [51] This thesis focuses
specifically on multitasking FreeRTOS on a singbee¢ but will discuss the other available OS

for context.

4.2 Bare-Metal

Bare-Metal is a simple, low-level software layeclided in the Xilinx SDK. It provides
processor features including caches, interruptd,exgeptions in a single threaded manner. The

OS provides basic I/O, profiling, abort, and exatfures. A basic C program application can be
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run on top of the Bare-Metal OS. [39] Bare-metalssd on a software system that typically does
not require many features that are normally pravithy an actual OS. There are trade-offs
between having a simple software system over anXD®S requires some processor throughput
and tends to be less deterministic than that dfnple software system, but the simple system
might not be able to handle the overhead or lackrdenism. In today’s embedded processing
design, processing speeds allow an OS to run wetligible overhead though some system

designers avoid an OS due to their complexity. [51]

4.3 Linux

As an addition to the Bare-metal OS, Xilinx prosdeftware design tools for the development
of Linux applications. The Zynq EPP evaluation lboaomes with a pre-installed Linux kernel
that is monitored by Xilinx and is specifically dgsed to run on the Zynq EPP. Additionally,
there are various vendors that provide Linux disiibns. Linux is a popular OS among the Zynq
community. Many embedded designers use Linux bec#tus regarded as a protected full-
featured OS that takes advantage of the MMU inptioeessor and provides SMP capabilities to
utilize multiple processors. Xilinx provides drigefor the peripherals in the PS and additional

drivers can be added for custom logic in the PL.

Linux can boot in multiple ways including from adiamage into flash during power up or
resetting the board, downloading and running thBLF@hich is followed by U-Boot and then
the Linux Kernel, or using U-Boot to load and ramages. U-Boot is an open source bootloader
used by Xilinx and the Linux community. Linux isret RTOS, but does have some real-time
characteristics. [51] Designers that require a RTMIE find FreeRTOS to be an applicable

solution.
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4.3 FreeRTOS

The FreeRTOS port for the Zynq EPP is availablenftbe FreeRTOS website. It is based on
version 7.0.2 of FreeRTOS and should be noted ithat not supported by Xilinx Technical
Support. It was tested to run with the default Zyi@j02 system, a CPU frequency of 667 MHz,
and in JTAG boot mode. It utilizes SCUTIMER, whidlns at half the CPU frequency, for
generating tick interrupts. The UART is used fapithying messages on a console terminal such
as Tera Term. The FreeRTOS port extends the Batal§l&tandalone BSP to recognize and
include FreeRTOS source files. Some demo applicatare included with the port including
applications for printing Hello World to the termainas well as blinking LEDs using semaphores
and mutexs. This port utilizes all the standarceREOS functions available and was used as the

basis for all of the work in this thesis. [56]
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CHAPTER 5

UTILIZING THE ZYNQ EPP HARDWARE

5.1 Introduction

It is important to understand how to develop an esaled system with the Zynq EPP and the
various options it makes available to the desighke evaluation board has several boot options
and can boot from a bootable image on an SD caat,ih Quad SPI mode, or with JTAG using
a Xilinx Platform Cable. Additional IP in not reqed to utilize the Zyng PS, but if peripherals
that used the PL are, it can be attached by ad&sgdn the fabric. This PS + PL combination
allows an embedded designer to achieve complex,effidient designs of a single SoC.
Additional hardware components can be attachedhéo hardware board including a Pmod

connection. [51]

5.2 Booting

The Zyng EPP can be configured to boot in securdemgsing static memories only, which is
JTAG disabled, or in non-secure mode using statimories or JTAG. JTAG mode is primarily
used for development and debugging. Other bootntigs include NAND, parallel NOR, Serial
NOR, also known as Quad-SPI, or SD flash memorgr&lare three boot stages the Zyng can go
through. Stage-0 boot know as BootROM, followedtyy FSBL, and then optionally a Second
Stage Bootloader. [51] The JTAG boot mode was dgethe entirety of this thesis. In order to
use JTAG for programming and debugging, the bodhdreneeds a Xilinx Platform Cable or a
Digilent Cable. This thesis used the Xilinx PlatfoCable Il. If the designer decides to boot from

SD, an 8 GB SD card is included to store bootahkges for the evaluation to boot in SD mode.
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5.3 Pmod Connection

All of the projects of this thesis targeted the @702 Rev C evaluation board. The evaluation
board requires several additional hardware comgsnenfunction. The board gets its power
from an AC power adapter that provides 12 VDC. Bleard communicates with the host pc
using a USB Type-A to USB Mini-B cable. Pmod cortoex were used to attach an external
Pmod module. When performing benchmarking, all aignvere sent through the Pmod2 port of
the Zynq EPP evaluation board and measured. Inr doddo this, a Digilent 6-pin Test Point

header Pmod module was used that provides connsdtio probing. [49]

The signals sent to the Pmod2 port were measuiad asDigiView Tech Tool Logic Analyzer
model DV1-100. It is a 100 MHz, 18 Channel, anafythat connects to the host terminal through
a USB 1.0 to USB 2.0 cable. [55] Signals are meadousing the provided software tool from

DigiView. [48] All benchmarking data was recordeging this tool.
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CHAPTER 6

RESULTS

6.1 Introduction

Implementing FreeRTOS on the Zynq EPP requiredhatepth understanding of the design tools
and hardware. The work in this thesis discussestitheline of development on the Zynq
evaluation board. Understanding the basic developitmmls and hardware began by following
the basic tutorials provided with the evaluation R39] It reviews the software design tool basics
and implements the infamous “Hello World” programattprints the message to a terminal. There
is a strong Zynq EPP community being develop, nspeifically for the Zedboard, which is an
available resource for beginning designers. Desighags, including the Zynq Geek blog, have

been supported by Zedboard.org and have their panas the community website. [45]

6.2 Bare-Metal - Single Core

Bare-Metal is included with the Xilinx ISE Designig and is supported by several tutorials
from Xilinx. It provides a basis for understandibgsic C program development on the Zynq
EPP. It works with the default hardware setup @anstriongly supported by Xilinx. Implementing

“Hello World” is the start for embedded designdfsom here, designers can begin to talk to
various built in peripherals including switches dti€Ds. The first step is to design with only the
PS and using AXI GPIO MIO. This does not require tiesigner to program the FPGA fabric.
This allows the designer to control LEDs and comivate with the UART, and various other

AXI interconnects.

Once an understanding is of the PS has been dedkldpe EMIO can be used. This AXI
interconnect utilize the PL and requires the FPGAd programmed at the most basic level. The

PL at the most basic level acts like a wire andseasignals. This allows for the use of GPIO
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such as the PMO2 connector on the evaluation b@&e PL can also eventually be used in more
advanced ways than simply passing signals, but matl be addressed in this thesis. A basic
example of this is controlling the LEDs using a PVgMnal which is sent to the PL as a duty

cycle from the PS. [53]

6.3 FreeRTOS - Multitasking Single Core

A strong basic understanding of the Zyng EPP isleédo implement more advanced designs.
The concepts utilized with Bare-Metal carry ovarvimrk with FreeRTOS. The port provided for
FreeRTOS to run on the Zynq EPP provides basicucisbns to implement the OS on a single
core of the hardware. [56] It contains basic examgpplications including printing “Hello
World” with tasks and blinking LEDs with semaphoasl mutexes. With these basic examples
and FreeRTOS manuals, [57] more advanced applicatian be developed. Similarly, as with
Bare-Metal, C programs can be developed to utihee AXI GPIO MIO interconnects. Again,

this just requires just the PS and no PL needs ordgrammed.

The PL and the EMIO can be utilized by programmtimg FPGA fabric. Again, it can used as a
basic wire or can eventually be programmed for nameanced system development. There is
currently a known problem with FreeRTOS where & #L is programmed, there are problems
with libraries in the SDK and the designer must oaly modify them. [56] The Pmod2 was
used to perform the benchmarking and required arogring the PL due to it being an EMIO

interconnect on the evaluation board.

6.4 Benchmarking

The benchmarking for FreeRTOS followed the souaecrom the Rhealstone Benchmarking
done for the iIRMX RTOS with minor modifications twork with the new OS. [37] Each
benchmark starts by outputting a HIGH single to Braod2 port and is measured with the

DigiView Logic Analyzer. When the benchmark is §hed, it sets the Pmod2 signal low. The
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time the signal remained HIGH was used as the totatution time of each benchmark. The
DigiView Logic Analyzer has a resolution of 10 nsso the benchmarks utilize sample
interpolation to produce a finer measurement. & ktated previously, the CPU operates at 633
MHz for FreeRTOS, which results in a period of higec. Each of the benchmarks perform are

discussed in detail and the source code is provitddte Appendices.

6.4.1 FreeRTOS Task-Switching Time
The Task-Switching benchmarking sets up two tasikis aqual priority. The tasks switch back

and forth between the processor and repeats fdd(b@@6rations. To first determine the time it
takes to perform the for loop “work”, the benchmarkt measures the loops performing no work

and not task switching. This is shown in Code higtl.

for (countl = 0; countl < MAX_LOOPS_SERIAL; culi++)
/I Do Nothing
}
for (count2 = 0; count2 < MAX_LOOPS_SERIAL; ca+)

/I Do Nothing
}

Code Listing 1: Benchmark without Task-Switching Time

The MAX_LOOPS_SERIAL is the total number of itecats for the benchmark. This code does
not actually create tasks and simply determinegxaeution time of the portions of the code that
are not part of the Task-Switching measurement. éileeution of this code segment is recorded
with the Digiview software and the second portidrthe code runs. The second portion utilizes
two tasks. This time the two tasks perform taskiavimg for the desired number of iterations.

This is shown in Code Listing 2.

The prvFirst and prvSecond are the two tasks réispdcand each perform their own “work”
loops for the number of iteration specified by MAXOOPS_TASK_SWITCHING which for

this benchmark was 500,000. The Task-Switchingerdopmed by the taskYIELD(); command.
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When the tasks are finished, the vTaskDelete(yisisd to delete the task and the xHandle

variable points to the desired task. In this casieask deletes itself.

static void prvFirst( void *pvParameters ) //Task 1

{
for(;;)
{
for (countl = 0; countl < MAX_LOOPS_TASK_SWITCHBY countl++)
{
taskYIELD();
}
vTaskDelete(xHandleFirst); // Delete Task 1
}
}
static void prvSecond( void *pvParameters ) //TAsk
{
for(;;)
{
for (count2 = 0; count2 < MAX_LOOPS_TASK_SWITCHBY count2++)
{
taskYIELD();
vTaskDelete(xHandleSecond); // Delete Task 2
}
}

Code Listing 2: Task-Switching Time

The Task-Switching value is important for the othmmchmarks. Since most of the other
benchmarks require Task-Switching as part of tiherbenchmarks, the value calculated in this
section can be used to negate the extra time rmexhfurthe other benchmarks inflated by Task-

Switching.

6.4.2 FreeRTOS Preemption Time
The Preemption benchmarks works by creating twkstaBask 2 has a higher priority and delays

for one tick interrupt. While it’s sleeping, Taskuns. Task 1 gets preempted when Task 2 wakes
and Task 2 runs again, but immediate delays. Tpeats for 15000 iterations. The benchmark
first accounts for the processing time requiredh®yfor loops that do “work” as shown in Code

Listing 3.

46



for (countl = 0; countl < MAX_LOOPS; countl++)

{
for (i = 0; i < ONE_TICK_AVERAGE; i++)

/I Do Nothing
}

}
for (count2 = 0; count2 < MAX_LOOPS; count2++)

/I Do Nothing
}

Code Listing 3: Benchmark Time without Preemption

MAX_LOOPS is equal to the benchmark iteration numi@NE_TICK_AVERAGE is the
average amount of for loops that can be performathd one tick. Once the time for the for
loops are determined, the two tasks are createdhanoenchmark measures the preemption time.
Task 2 runs and immediately sleeps and Task 1 ‘deak” until it gets preempted by Task 2.

This is demonstrated in Code Listing 4.

static void prvFirst( void *pvParameterdJask 1

for(;;)
{
for (countl = 0; countl < MAX_LOOPS; countl++)

{
for (i=0; i < ONE_TICK; i++)

/I Do Nothing
}

}
vTaskDelete(xHandleFirst); // Delete Task 1

}

static void prvSecond( void *pvParameteréliask 2
{
for(:;)
{
for (count2 = 0; count2 < MAX_LOOPS; count2++)

{
i = ONE_TICK; // Reset i because i never readbiE TICK

vTaskDelay(1); // Delay a single tick

}
vTaskDelete(xHandleSecond); // Delete Task 2

Code Listing 4: Preemption Time

47



ONE_TICK is a slightly higher number than the numbé for loops that can be performed
during one tick. The vTaskDelay(); accepts the neimif ticks the specific task should delay.
While Task 2 delays, Task 1 can run but only uftisk to wakes up from its delay. The two
measurement times are subtracted from each othetetiermine the Preemption and Task
switching time. The time determined for Task-Swicf which was determined from the first
benchmark, is subtracted from the Preemption beadhtime to calculate the Preemption time

itself.

6.4.3 FreeRTOS Semaphore Shuffle Time

This Semaphore Shuffle Time benchmark createsk® tasd a binary semaphore. Each task only
has 2 capabilities. They can either take or gieesimaphore and yield after either action. Task 1
will start by taking the semaphore and then yidldsk 2 runs and also attempts to take the
semaphore. It blocks because it cannot, and waitthhé semaphore to be available. Task 1 runs
and releases the semaphore and yields again. TaskvXees that Task 1 has released it and
takes the semaphore and then yields. Task 1 n@mpts to take the semaphore, cant because
Task 2 has it, and therefore it blocks and waitsitfdo be available. Task 2 runs, releases the
semaphore, and yields. The process repeats fapmfied number of iterations. Code Listing 5

shows Task 1 and Code Listing 6 shows Task 2.

The benchmark needs to first be ran without theapdmore and then ran with it. The two

execution times are subtracted from each otheeterchine the Semaphore Shuffle Time. Task 1
and Task 2, when the sem_exe is set to zero, thageore is not used and the benchmark is ran
to determine the execution time of each loop asH-tavitches. When sem_exe is set to one, the

benchmark utilizes the semaphore.
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static void prvFirst( void *pvParameters ) //Task 1

{
for(;;)
{
for (countl = 0; countl < MAX_LOOPS; countl++)
{
if (sem_exe ==1)
{
xSemaphoreTake(xSemaphore, portMAX_DELAY);
}
taskYIELD();
if (sem_exe ==1)
{
xSemaphoreGive(xSemaphore);
}
taskYIELD();
}
vTaskDelete(xHandleFirst); //Delete Task 1
}
}

Code Listing 5: Semaphore Shuffle Task 1

The xSemaphoreTake(); command allows the taskke te semaphore if available and the
xSemaphoreGive(); allows the task to give the sdmmiap The xSemaphore is the handle for the
binary semaphore that was created while portMAX_BFlLforces the task to wait indefinitely

until the semaphore is available. After the tas&gehrun for the desired number of iterations,

they delete themselves.
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static void prvSecond( void *pvParameters ) //TAsk

{
for(;;)
{
for (count2 = 0; count2 < MAX_LOOPS; count2++)
{
if (sem_exe == 1)
{
xSemaphoreTake(xSemaphore, portMAX_DELAY);
}
taskYIELD();
if (sem_exe == 1)
{
xSemaphoreGive(xSemaphore);
}
taskYIELD();
}
vTaskDelete(xHandleSecond); //Delete Task 2
}
}

Code Listing 6: Semaphore Shuffle Task 2

6.4.4 FreeRTOS Deadlock Breaking Time

The Deadlock Breaking Time benchmark creates 3taakh with a higher priority than the next.
Task 3 has the highest priority, Task 2 has a nmeqtitiority and Task 1 has the lowest priority.
Task 1 takes the mutex and gets preempted by TaB&sk 2 runs for a little and gets preempted
by Task 3. Task 3 requests the mutex and a deadlmks because Task 1 has it. Task 3 blocks
due to the dead-lock allowing Task 2 to run. Taskinkshes and delays letting Task 1 run
allowing the it to release the mutex. It then gatsempted immediately by Task 3 which takes

the mutex and then releases it immediately. Thichmark repeats for the desired iterations.

This benchmark measures the dead-lock resolutime.tiBy this, we mean that the time is
inflated by the time of 2 preemptions, and sevisk-switches that is caused by the dead-lock.

Tasks 1, 2, and 3 are shown in the Code Listin@s dnd 9 respectively.
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static void prvFirst( void *pvParameters ) //Task 1

{
for(;;)
{
if (countl == MAX_LOOPS)

{
vTaskDelete(xHandleFirst); //Delete Task 1

xSemaphoreTake(xMutex, portMAX_DELAY); //Take ¢

for (i=0; i < ONE_TICK; i++) //delay loop
{

}

xSemaphoreGive(xMutex); //Release control
countl++;

//Do Nothing

Code Listing 7: Dead-Lock Breaking Task 1

The xMutex is the handle for the mutex.

static void prvSecond( void *pvParameters ) //TAsk
for(;;)
for(;;)
{

if (count2 == MAX_LOOPS)
{

}

for (j = 0; j < ONE_TICK/4; j++) //Delay loop
{

vTaskDelete(xHandleSecond); //Delete Task 2

//Do Nothing

}
vTaskDelay(1); //Delay a single tick
count2++,

}

Code Listing 8: Dead-Lock Breaking Task 2

The ONE_TICK variable is again the number of foode that can be performed for one tick.

ONE_TICK/4 is used because we only want the meduuiarity to run for a small amount of
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time just to take up some of the tick before Taslris. This will make sure that Task 1 will be

preempted. It will also make sure that there isnéermediate task between Task 1 and 3 in order

to cause the dead-lock.

static void prvThird( void *pvParameters )

for(;;)

{

if (count3 == MAX_LOOPS)
{

}
vTaskDelay(1); //Delay a single tick

i = ONE_TICK; //Reset Task 1

vTaskDelete(xHandleThird); //Delete Task 3

if (dead_brk == 1)

{
xSemaphoreTake(xMutex, portMAX_DELAY); //Takertrol
xSemaphoreGive(xMutex); //Release control

}

count3++;

Code Listing 9: Dead-Lock Breaking Task 3

The benchmark is ran twice by running the code waitd without the dead-lock occurring. The

dead_brk variable when set to zero prevents thd-bek from occurring. The benchmark is

measured with this setup and then dead_brk ioskt This causes the dead-lock to occur and is

measured again. The two measurements subtracted dach other produce the dead-lock

resolution time.

6.4.5 FreeRTOS Intertask Messaging Latency

The Intetask Messaging Latency benchmark worksyisreating two tasks. Task 2 receives

messages while Task 1 sends them. Task 2 has er pgbrity and attempts to receive and when

it does not receive a message it blocks. This alldask 1 to run, send a message, and then get

preempted by Task 2 who receives the message. Zlagk attempt to receive another message

and then again blocks. It repeats for the specifi@aiber of iterations. The measured time is the

52



time it takes to send a message, task switch,uet¢be message, block due to an empty Queue
and then task switch back to Task 1. Again the berack must first determine the time it takes

to perform the for loops and extra code as show@ode Listing 10.

for (countl = 0; countl < MAX_LOOPS; countl++)

{
/I Do Nothing
}
for (count2 = 0; count2 < MAX_LOOPS; count2++)
{
/I Do Nothing
}

Code Listing 10: Benchmark without Intertask Messagng

The benchmark then runs with the two task sendnagraceiving messages. This is shown in

Code Listing 11.

static void prvFirst( void *pvParameters )
for(:;)
{
for (countl = 0; countl < MAX_LOOPS; countl++)
if (xQueueSendToBack(xQueue, msg_buf, portMAX LBF)!=pdPASS)

// Nothing could be sent because blocking timagired
}

}

vTaskDelete(xHandleFirst); // Delete Task 1
}
static void prvSecond( void *pvParameters )

for(;;)

{
for (count2 = 0; count2 < MAX_LOOPS; count2++)
{
if (xQueueReceive(xQueue, recv_buf, portMAX_DEDA= pdPASS)
{
// Nothing Received because blocking timer mqgbi
}
}
vTaskDelete(xHandleSecond); // Delete Task 2
}

Code Listing 11: Intertask Message Latency
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The xQueueReceive(); and xQueueSend(); commandssarkto send and receive to the queue
that was created. The xQueue is the handle foguleeie, msg_buf variable holds the message to
be sent, and the recv_buf is the variable thatshithé message. The two times are subtracted
from each other to provide the Intertask Messageenay and task switching time. The

previously calculated task-switching time is thebtsacted to get the Intertask Message Latency

by itself.

6.4.6 FreeRTOS Rhealstone Benchmark

The FreeRTOS Rhealstone Benchmarks with calcukateldhe statistics of each are presented in
Table 1. The Interrupt Latency benchmark was ndtohed due to difficulties of implementation.
The table presents the average time for each péean@gemaximum and minimum value from
running each benchmark five times of each seten&iions specified in the Appendices, and the
variance of each.

Table 1: FreeRTOS Rhealstone Benchmarks

Rhealstone Benchmarks| Average Time | Minimum Maximum | Variance

Task-Switching Time 230.26 nsec 230.26 nsec  230.26 nsec  .00027 nsec

o

Preemption Time 11.348 psec 11.346 pse 11.352 usec  5.4858|nsec

Semaphore Shuffle Time 321.85 nsec 321.75nsec  322.63 ngsec .87514 hsec

Deadlock Breaking Time 24.041 psec 19.499 use

o

29.315 usec  9.8150|usec

Intertask Message Latency| 1.5564 psec 1.5559 pse

O

1.5571 ppec  1.2327 nsec

The Rhealstone Benchmark can be calculated froseth@lues using equation 2.1 and 2.2 with

the exception of the Interrupt Latency measurement.
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CHAPTER 7

CONCLUSION

The completed work in this thesis includes 5 ofRirealstone benchmarks for the Zyng EPP
Evaluation Board running FreeRTOS. These benchnmdisde a basis for embedded designers
to understand and compare FreeRTOS'’s performantieeaiynqg EPP ARM core. This thesis
provides a starting point for more advance appbcatevelopment with FreeRTOS by providing
thoroughly commented and detailed code. It providsgmation on starting a new project with
the Zyngq EPP and compiled a plethora of resoutwsmay help further the development. The
thesis began by developing a history to understandthe Zynq EPP was designed and utilizes
the hardware that it does. This provides contexwbw it is such an important piece of hardware
in today’'s engineering world. The basics of theigiesools were discussed in a manner that helps
designers understand their overall importance al&s$ quickly and effectively. With an
understanding of the tools, the Zynq EPP coulddsel o develop application upon with ease.
The performance of these applications are impottabenchmark in order understand the
hardware’s capabilities including its strengths am@knesses. The thesis provides a stepping

stone for future Zyng EPP development.
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CHAPTER 8

FUTURE WORK

As more embedded designers work with the Zynq EfPPcommunity will grow. A greater
understanding of how the hardware can be utilizéicb@come more readily available. With a
stronger understanding of the hardware platfornremesources and support will be available for
designers to reference. The future goals of tliearch are to implement AMP starting with
Bare-Metal running on both cores. Next, would badage FreeRTOS running on both cores or
FreeRTOS on one core and Bare-Metal on anothectBearking with this type of PS would
continue in order to provide embedded designetts anteven stronger understanding of the
system’s capabilities. Additional goals would beexbeend more work to the PL. Once a solid
foundation is laid for the Zynq EPP, it will becothe training tool for instructing future

embedded engineers.
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APPENDIX A
TASK-SWITCHING CODE

¥ s
Author: Timothy J Boger
Date: 4/29/13

Task Switching Benchmark

OS:FreeRTOS

Platform: ZC702 Evaluation Board

References: - “FreeRTOS Port for Xilinx Zyng Dewt€&reeRTOS Ltd. February 12, 2013.
- R. Kar.. "Implementing the Rheaiee Real-Time Benchmark". 1990.
- Cory Nakaji. "MIO, EMIO and AXI GPIO LE®for ZzC702". 2013.

¥ */

/I Includes

#include "FreeRTOS.h"

#include "task.h"

#include "queue.h"

#include "timers.h"

#include "xil_printf.h"

#include "stdio.h"

#include "xparameters.h”

#include "xgpio.h"

#include "xgpiops.h"

//**************************

/IAXI Variables
static XGpioPs emio_pmod2;

#define EMIO_54 54
#define EMIO_55 55
#define EMIO_56 56
#define EMIO_57 57

//**************************

//Benchmark Variables
#define MAX_LOOPS_SERIAL 500000 //Max loops fomsilation
#define MAX_LOOPS_TASK_SWITCHING 499999 //Accourdifor extra Task3 switching

unsigned long countl = 0, count2 = 0;

//******************'k****************************** *kkkkkkk

// Priorities at which the tasks are created

#define mainFIRST_TASK_PRIORITY (tskIDLE_PRIORIT2)
#define mainSECOND_TASK_PRIORITY  (tskIDLE_PRIORITY2 )
#define mainTHIRD_TASK_PRIORITY (tskIDLE_PRIORITY 3)
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/ kkkkkkhkkkkkkkkkkkkkkkkkkkkkkkhkkkkkhkhkkkkkkkkkhkkkkx *kkkkkkk

//Associate Functions with Tasks

static void prvFirst( void *pvParameters );
static void prvSecond( void *pvParameters );
static void prvThird( void *pvParameters );

//************************************************* *kkkkkkk

/ITask Handle

xTaskHandle xHandleFirst;
xTaskHandle xHandleSecond;
xTaskHandle xHandleThird;

//************************************************* *kkkkkkk

//Main

int main( void )
prvinitializeExceptions();
//************************************************ *kkkkkk
[IAXI Setup

XGpioPs_Config *ConfigPtrPS;

ConfigPtrPS = XGpioPs_LookupConfig(0);
XGpioPs_Cfglnitialize(&emio_pmod2, ConfigP8P
ConfigPtrPS->BaseAddr);

//******************************************* kkkkkkkkkkkk

//Setup PMOD 2 pins
XGpioPs_SetDirectionPin(&emio_pmod2, EMEZ, 1);
XGpioPs_SetOutputEnablePin(&emio_pmod2 |@M4, 1);
XGpioPs_SetDirectionPin(&emio_pmod2, EMB3B, 1);
XGpioPs_SetOutputEnablePin(&emio_pmod2 JEN55, 1);
XGpioPs_SetDirectionPin(&emio_pmod2, EMBB, 1);
XGpioPs_SetOutputEnablePin(&emio_pmod2 |BM6, 1);
XGpioPs_SetDirectionPin(&emio_pmod2, EMETF, 1);
XGpioPs_SetOutputEnablePin(&emio_pmod2 JEN57, 1);

//******************************************* *kkkkkkkkkkk

//Setup PMOD 2 outputs to zero
XGpioPs_WritePin(&emio_pmod2, EMIO_54, dx0
XGpioPs_WritePin(&emio_pmod2, EMIO_55, dx0
XGpioPs_WritePin(&emio_pmod2, EMIO_56, dx0
XGpioPs_WritePin(&emio_pmod2, EMIO_57, Ox0

/ kkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkx *kkkkkk

//Start Benchmark
xil_printf("Start of Task Switching Benchmark\njr"
xil_printf("Each task runs %D times\r\n", MAX_LOGP SERIAL);

/************************************************* kkkkkkkkkkkkkkkk
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Serial Non_Switching Measurement

Measure execution time of taskl and task2 whey &ne executed
serially (without task switching).

Measure the time between the High and Low GPItpwu

/************************************************* *****************/

xil_printf("Start Serial Non_Switching Measurememt");
XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x1); //&#R10 HIGH
for (countl = 0; countl < MAX_LOOPS_SERIAL,; calin+)

{
}

for (count2 = 0; count2 < MAX_LOOPS_SERIAL,; cdR#+)
{

}

XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x0); //$#R10 LOW

//Do Nothing

// Do Nothing

xil_printf("Serial Non_Switching Measurement Doe?);

/************************************************* kkkkkkkkkkkkkkkk

Task Switching Measurement

Create three tasks. Task 1 and Task 2 will perfitie task switching.
Task 3 controls the start and finish of the pangiand sets the GPIO pin

Measure the time between the High and Low GPItpwu

kkkkkkkkkkkkkkkkkkkkhkkkkkkkhkhkkkkkkhkkkkkkkkkkkhkkkkk ****************/

xil_printf("Start Task Switching Measurement\r\n")

/[Create three tasks

xTaskCreate( prvFirst, ( signed char *) "F",
configMINIMAL_STACK_SIZE, NULL,
mainFIRST_TASK_PRIORITY, &xHandleFirst );

xTaskCreate( prvSecond, ( signed char *) "S",
configMINIMAL_STACK_SIZE, NULL,
mainSECOND_TASK_PRIORITY, &xHandleSecond );

xTaskCreate( prvThird, ( signed char *) "T",
configMINIMAL_STACK_SIZE, NULL,
mainTHIRD_TASK_PRIORITY, &xHandleThird );

vTaskStartScheduler();
/* If all is well, the scheduler will now be rumd, and the following line
will never be reached. If the following line da@secute, then there was

insufficient FreeRTOS heap memory available ferithe and/or timer tasks
to be created. See the memory management sectithre FreeRTOS web site

64



for more details. */

for(;; );
/ kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk kkkkkkkkkkkkkkkkkkkk
/[Task 3
static void prvThird( void *pvParameters )

for(;;)

//IRuns First due to having highest priority
XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x15ét GPIO
HIGH

vTaskPrioritySet(xHandleThird, tskiIDLE_PRIORITY1);
/lreduce priority below Task 1 and 2

Il Task will yield hereReturns when Task 1 and 2 delete themselves

IIxil_printf("LOW\\n");
XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x05ét GPIO

LOW
xil_printf("Task Switching Measurement Done\}in
vTaskDelete(xHandleThird); //Delete Task 3
}
}
//************************************************* *kkkkkkkkkkkkkkkkkkk
/[Task 1
static void prvFirst( void *pvParameters )
for(;;)
{
for (countl = 0; countl < MAX_LOOPS_TASK_SWITQOWGE;
countl++)
{
taskYIELD();
vTaskDelete(xHandleFirst); //Delete Task 1
}
}
//************************************************* *kkkkkkkkkkhkkkkkkkhkkk
/[Task 2
static void prvSecond( void *pvParameters )
for(;;)
{
for (count2 = 0; count2 < MAX_LOOPS_TASK_SWITQOWE;
count2++)
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taskYIELD();

}
vTaskDelete(xHandleSecond); //Delete Task 2

}

//************************************************* kkkkkkkkkkkkkkhkkkkhkk

void vApplicationMallocFailedHook( void )

{
I* vApplicationMallocFailedHook() will only be chdd if
configUSE_MALLOC_FAILED_HOOK is set to 1 in FreeRBConfig.h. It is a hook
function that will get called if a call to pvPortoc() fails.
pvPortMalloc() is called internally by the kernahenever a task, queue or
semaphore is created. It is also called by vararts of the demo
application. If heap_1.c or heap_2.c are useh the size of the heap
available to pvPortMalloc() is defined by configT®L_HEAP_SIZE in
FreeRTOSConfig.h, and the xPortGetFreeHeapSizZe(function can be used
to query the size of free heap space that renfaltiough it does not
provide information on how the remaining heap rhigd fragmented). */
taskDISABLE_INTERRUPTS();
for(;;);

}

//************************************************* kkkkkkkkkkkkkkhkkkkkk

void vApplicationStackOverflowHook( xTaskHandle *pask, signed char *pcTaskName )
{

(void ) pcTaskName;

(void ) pxTask;

/* vApplicationStackOverflowHook() will only be dad if
configCHECK_FOR_STACK_OVERFLOW is set to eithenrl2. The handle and hame
of the offending task will be passed into the hatction via its
parameters. However, when a stack has overfloivedpossible that the
parameters will have been corrupted, in which theg@xCurrentTCB variable
can be inspected directly. */
taskDISABLE_INTERRUPTS();
for(;;);
}

/ kkkkkkkkkkkkkkkkkkkkkkhkkkkkkkhkkkkkhkhkkkkkkkkkhkkkkx kkkkkkkkkkkkkkkkhkkkk

void vApplicationSetupHardware( void )

{
}

/* Do nothing */
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APPENDIX B
PREEMPTION TIME CODE

¥ s
Author: Timothy J Boger
Date: 4/29/13

Preemption Time Benchmark

OS:FreeRTOS

Platform: ZC702 Evaluation Board

References: - “FreeRTOS Port for Xilinx Zynq Deagt FreeRTOS Ltd. February 12, 2013.
- R. Kar.. "Implementing the Rheal&d®eal-Time Benchmark". 1990.

- Cory Nakaji. "MIO, EMIO and AXI GPIO LE®for ZC702". 2013.

[H e */

/I Includes

#include "FreeRTOS.h"

#include "task.h"

#include "queue.h"

#include "timers.h"

#include "xil_printf.h"

#include "stdio.h"

#include "xparameters.h”

#include "xgpio.h"

#include "xgpiops.h"

//**************************

/IAXI Variables
static XGpioPs emio_pmod2;

#define EMIO_54 54
#define EMIO_55 55
#define EMIO_56 56
#define EMIO_57 57

//**************************

/IBenchmark Variables

#define MAX_LOOPS 15000 //Max loops for simulation

#define ONE_TICK 480000 //Number dependent on QRUkt be longer than sleep period.
/[The amount of for loop iterations per onerrupt tick

#define ONE_TICK_AVERAGE 475620

unsigned long countl, count2, i

/ kkkkkkhkkkkkkkkkkkkkkkkhkkkkkkkhkkkkkkhkhkkkkkkkkkhkkkkx *kkkkkkk

/I Priorities at which the tasks are created

#define mainFIRST_TASK_PRIORITY (tskIDLE_PRIORIT2)
#define mainSECOND_TASK_PRIORITY  (tskIDLE_PRIORITY3)
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#define mainTHIRD_TASK_PRIORITY

//*************************************************

/IAssociate Functions with Tasks

static void prvFirst( void *pvParameters );
static void prvSecond( void *pvParameters );
static void prvThird( void *pvParameters );

//*************************************************

/ITask and Queue Handles

xTaskHandle xHandleFirst;
xTaskHandle xHandleSecond;
xTaskHandle xHandleThird;

/ kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

/IMain

int main( void )

{

prvinitializeExceptions();

(tskIDLE_PRIORIT¥ 4)

*kkkkkkk

*kkkkkkk

*kkkkkkk

/ kkkkkkkkkkkkkhkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkhkk kkkkkkk

/IAX] Setup

XGpioPs_Config *ConfigPtrPS;

ConfigPtrPS = XGpioPs_LookupConfig(0);
XGpioPs_Cfglnitialize(&emio_pmod2, ConfigP8P

ConfigPtrPS->BaseAddr);

//******************************************* *kkkkkkkkkkk

//[Setup PMOD 2 pins

XGpioPs_SetDirectionPin(&emio_pmod2, EMB3, 1);
XGpioPs_SetOutputEnablePin(&emio_pmod2 JEN54, 1);
XGpioPs_SetDirectionPin(&emio_pmod2, EMES, 1);
XGpioPs_SetOutputEnablePin(&emio_pmod2 |@M5, 1);
XGpioPs_SetDirectionPin(&emio_pmod2, EMEB, 1);
XGpioPs_SetOutputEnablePin(&emio_pmod2 JEN56, 1);
XGpioPs_SetDirectionPin(&emio_pmod2, EMBJ, 1);
XGpioPs_SetOutputEnablePin(&emio_pmod2 |@M7, 1);

//******************************************* *kkkkkkkkkkk

//Setup PMOD 2 outputs to zero
XGpioPs_WritePin(&emio_pmod2, EMIO_54, ix0
XGpioPs_WritePin(&emio_pmod2, EMIO_55, 0
XGpioPs_WritePin(&emio_pmod2, EMIO_56, dx0
XGpioPs_WritePin(&emio_pmod2, EMIO_57, dx0

//************************************************ kkkkkkk
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//Start Benchmark

xil_printf("Start of Preemption Time Benchmark\r
xil_printf("Each task runs %D times\r\n", MAX_LOGE,

/************************************************* kkkkkkkkkkkkkkkkkkkkkk

Serial Execution Measurement Without Task Switghor Preemption

Measure execution time of taskl and task2 whey &ne executed
serially (without messages).

Measure the time between the High and Low GPItpwu

/************************************************* ********************/

XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x1); //$#®10 HIGH
xil_printf("Start Serial Execution Without Task &@hing or Preemption\r\n“);

for (countl = 0; countl < MAX_LOOPS; countl++)

{ for (i=0; i < ONE_TICK_AVERAGE; i++)
{ //Do Nothing
}
for (count2 = 0; count2 < MAX_LOOPS; count2++)
i i = ONE_TICK; /lreset i because i never readbd=_TICK

XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x0); //$#R10 LOW

xil_printf("Serial Execution Without Task Switchyror Preemption Done\r\n");

/************************************************* kkkkkkhkkkkkkkhkkkkkkkkk

Task Switching and Preemption Time Measurement

Create three tasks. Task 1 and Task 2 will perfime Task Switching and Preemption.
Task 1 does busy work and gets preempted by Z.ask

Task 2 has a higher priority than Task 1. Taskl¥ runs when Task 2 yields.

Task 3 controls the start and finish of the pangiand sets the GPIO pin

Measure the time between the High and Low GPItpwiu

kkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkhkkkkkkkkkkkkkkkkk *********************/

xil_printf("Start Task Switching and Preemptiomid Measurement\r\n®);

/[Create three tasks

xTaskCreate( prvFirst, ( signed char *) "F",
configMINIMAL_STACK_SIZE, NULL,
mainFIRST_TASK_PRIORITY, &xHandleFirst );

xTaskCreate( prvSecond, ( signed char *) "S",
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configMINIMAL_STACK_SIZE, NULL,
mainSECOND_TASK_PRIORITY, &xHandleSecond );
xTaskCreate( prvThird, ( signed char *) "T",
configMINIMAL_STACK_SIZE, NULL,
mainTHIRD_TASK_PRIORITY, &xHandleThird );

vTaskStartScheduler();

/* If all is well, the scheduler will now be rum@, and the following line

will never be reached. If the following line da@secute, then there was
insufficient FreeRTOS heap memory available feritie and/or timer tasks
to be created. See the memory management sectitire FreeRTOS web site
for more details. */

for(;;);

/ kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk kkkkkkkkkkkkkkkkkkkkx

/[Task 3

static void prvThird( void *pvParameters )
for(;;)
{

//IRuns First due to having highest priority
XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x1);dt%PIO HIGH

vTaskPrioritySet(xHandleThird, tskiIDLE_PRIORITFY1); //reduce
priority below Task 1 and 2

Il Task will yield hereReturns when Task 1 and 2 delete themselves
XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x0);6t%PIO LOW

xil_printf("Task Switching and Preemption Timesksurement

Done\r\n");
vTaskDelete(xHandleThird); //Delete Task 3
/ kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk *kkkkkkkkkkkkkkkkkkk

/[Task 1 - Lower Priority, Gets Preempted
static void prvFirst( void *pvParameters )

for(;;)
{
for (countl = 0; countl < MAX_LOOPS; countl++)
{
for (i=0; i < ONE_TICK; i++)
{
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//Do Nothing
}

}
vTaskDelete(xHandleFirst); //Delete Task 1

}

//************************************************* kkkkkkkkkkkkkkkkkkkk

/[Task 2 - Higher Priority, Preempts
static void prvSecond( void *pvParameters )

for(;;)
{
for (count2 = 0; count2 < MAX_LOOPS; count2++)

{
IIxil_printf("i value: = %D \r\n", i); //Used tdetermine
AVERAGE_ONE_TICK
i = ONE_TICK; //reset i because i never readDdE_TICK
vTaskDelay(1); //Delay a single tick

}
vTaskDelete(xHandleSecond); //Delete Task 2

}

/ kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk kkkkkkkkkkkkkkkkkkkkx

void vApplicationMallocFailedHook( void )

{
/* vApplicationMallocFailedHook() will only be ckdd if
configUSE_MALLOC_FAILED_HOOK is set to 1 in FreeRBConfig.h. It is a hook
function that will get called if a call to pvPortioc() fails.
pvPortMalloc() is called internally by the kernahenever a task, queue or
semaphore is created. It is also called by vargarts of the demo
application. If heap_1.c or heap_2.c are usemh the size of the heap
available to pvPortMalloc() is defined by configT®L_HEAP_SIZE in
FreeRTOSConfig.h, and the xPortGetFreeHeapSize(fu#nction can be used
to query the size of free heap space that renfaltiough it does not
provide information on how the remaining heap rhlgg fragmented). */
taskDISABLE_INTERRUPTS();
for(;;);

}

//************************************************* kkkkkkkkkkkkkkkkkkkkx

void vApplicationStackOverflowHook( xTaskHandle *pask, signed char *pcTaskName )
{

(void ) pcTaskName;
(void ) pxTask;

/* vApplicationStackOverflowHook() will only be ded if

configCHECK_FOR_STACK_OVERFLOW is set to eithenrl2. The handle and name
of the offending task will be passed into the h&ction via its
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parameters. However, when a stack has overfloiviedpossible that the
parameters will have been corrupted, in which tasg@xCurrentTCB variable
can be inspected directly. */
taskDISABLE_INTERRUPTS();
for(;;);

}

/ kkkkkkkkkkkkkhkkkkkkkkkkkkkkkkhkkkkkkkhkkkkkhkkkhkkkkx kkkkkkkkkkkkkkkkkkkk

void vApplicationSetupHardware( void )

{
}

/* Do nothing */
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APPENDIX C
INTERTASK MESSAGE LATENCY CODE

¥ s
Author: Timothy J Boger
Date: 4/29/13

Inter-Task Message Latency Benchmark

OS:FreeRTOS

Platform: ZC702 Evaluation Board

References: - “FreeRTOS Port for Xilinx Zynq Deagt FreeRTOS Ltd. February 12, 2013.
- R. Kar.. "Implementing the Rheal&d®eal-Time Benchmark". 1990.

- Cory Nakaji. "MIO, EMIO and AXI GPIO LE®for ZC702". 2013.

[H e */

/I Includes

#include "FreeRTOS.h"

#include "task.h"

#include "queue.h"

#include "timers.h"

#include "xil_printf.h"

#include "stdio.h"

#include "xparameters.h”

#include "xgpio.h"

#include "xgpiops.h"

//**************************

/IAXI Variables
static XGpioPs emio_pmod2;

#define EMIO_54 54
#define EMIO_55 55
#define EMIO_56 56
#define EMIO_57 57

//**************************

//Benchmark Variables
#define MAX_LOOPS 1000000 //Max loops for simubati

char msg_buf[10] = "MESSAGE", recv_buf[10];

#define Queue_Length 10
#define Queue_Iltem_Size sizeof(msg_buf)

unsigned long countl, count2;

//******************'k****************************** *kkkkkkk

/I Priorities at which the tasks are created
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#define mainFIRST_TASK_PRIORITY (tskIDLE_PRIORIT2)
#define mainSECOND_TASK_PRIORITY  (tskIDLE_PRIORITY3)
#define mainTHIRD_TASK_PRIORITY (tskIDLE_PRIORIT¥ 4)

/ kkkkkkkkkkkkkkkkkkkkkkhkkkkkkkhkkkkkhkhkkkkkhkkkhkkkkx *kkkkkkk

/IAssociate Functions with Tasks

static void prvFirst( void *pvParameters );
static void prvSecond( void *pvParameters );
static void prvThird( void *pvParameters );

//************************************************* *kkkkkkk

/[Task and Queue Handles

xTaskHandle xHandleFirst;
xTaskHandle xHandleSecond;
xTaskHandle xHandleThird;

xQueueHandle xQueue;

//************************************************* *kkkkkkk

//Main

int main( void )
prvinitializeExceptions();
//************************************************ *kkkkkk
[IAXI Setup

XGpioPs_Config *ConfigPtrPS;

ConfigPtrPS = XGpioPs_LookupConfig(0);
XGpioPs_Cfglnitialize(&emio_pmod2, ConfigP8P
ConfigPtrPS->BaseAddr);

//******************************************* *kkkkkkkkkkk

//[Setup PMOD 2 pins
XGpioPs_SetDirectionPin(&emio_pmod2, EMEZ, 1);
XGpioPs_SetOutputEnablePin(&emio_pmod2 JEN54, 1);
XGpioPs_SetDirectionPin(&emio_pmod2, EMB3B, 1);
XGpioPs_SetOutputEnablePin(&emio_pmod2 |@M5, 1);
XGpioPs_SetDirectionPin(&emio_pmod2, EMEB, 1);
XGpioPs_SetOutputEnablePin(&emio_pmod2 JEN56, 1);
XGpioPs_SetDirectionPin(&emio_pmod2, EMBJ, 1);
XGpioPs_SetOutputEnablePin(&emio_pmod2 JEN57, 1);

//******************************************* kkkkkkkkkkkk

//Setup PMOD 2 outputs to zero
XGpioPs_WritePin(&emio_pmod2, EMIO_54, ix0
XGpioPs_WritePin(&emio_pmod2, EMIO_55, dx0
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XGpioPs_WritePin(&emio_pmod2, EMIO_56, dx0
XGpioPs_WritePin(&emio_pmod2, EMIO_57, Ox0

/ kkkkkkkkkkkkkhkkkkkkhkhkkkkkkkhkkkkkkkkkhkkkkkkkkkhkk kkkkkkk

/IStart Benchmark

xil_printf("Start of InterTask Message Latency Bamark\n\r");
xil_printf("Each task runs %D times\r\n", MAX_LOGE;,

/I Create Message Queue
xQueue = xQueueCreate(Queue_Length, Queue_ltes); Siz
if(xQueue == NULL)

/[The queue could not be created
xil_printf("Queue Create Error\n\r");

}

/************************************************* kkkkkkkkkkkkkkkkkkkkkk

Serial Execution Measurement Without Messages

Measure execution time of taskl and task2 whey &ne executed
serially (without messages).

Measure the time between the High and Low GPItpwu

/************************************************* *********************/

XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x1); //&R10 HIGH
xil_printf("Start Serial Execution Measurement Wdatit Messages\r\n);

for (countl = 0; countl < MAX_LOOPS; countl++)

{
//Do Nothing
}
for (count2 = 0; count2 < MAX_LOOPS; count2++)
{
/I Do Nothing
}

XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x0); //$R10 LOW

xil_printf("Serial Execution Measurement Withouebsages Done\r\n");

/************************************************* kkkkkkhkkkkkkkhkkkkkkkkk

Inter-Task Message Latency Measurement

Create three tasks. Task 1 and Task 2 will perfie Messaging.

Task 1 sends messages, Task 2 receives them.

Task 2 has a higher priority than Task 1 to nake it receives messages immediately
Task 3 controls the start and finish of the pangiand sets the GPIO pin
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Measure the time between the High and Low GPItpwu

kkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkhkkkkkkkkkkkkkkk *********************/

xil_printf("Start Inter-Task Message Latency Me&saent\r\n");

/[Create three tasks

xTaskCreate( prvFirst, ( signed char *) "F",
configMINIMAL_STACK_SIZE, NULL,
mainFIRST_TASK_PRIORITY, &xHandleFirst );

xTaskCreate( prvSecond, ( signed char *) "S",
configMINIMAL_STACK_SIZE, NULL,
mainSECOND_TASK_PRIORITY, &xHandleSecond );

xTaskCreate( prvThird, ( signed char *) "T",
configMINIMAL_STACK_SIZE, NULL,
mainTHIRD_TASK_PRIORITY, &xHandleThird );

vTaskStartScheduler();

/* If all is well, the scheduler will now be rum@, and the following line
will never be reached. If the following line da@secute, then there was
insufficient FreeRTOS heap memory available feritie and/or timer tasks
to be created. See the memory management sectitire FreeRTOS web site
for more details. */
for(;; );

}

/ kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk kkkkkkkkkkkkkkkkkkkkx

/[Task 3
static void prvThird( void *pvParameters )

for(;;)
{
//Runs First due to having highest priority

XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x1);dt%PIO HIGH

vTaskPrioritySet(xHandleThird, tskiIDLE_PRIORITFY1); //reduce
priority below Task 1 and 2

Il Task will yield hereReturns when Task 1 and 2 delete themselves
XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x0);6t%PIO LOW
xil_printf("Inter-Task Message Latency Measureitigone\r\n®);
vQueueDelete(xQueue);//Delete Queue

vTaskDelete(xHandleThird); //Delete Task 3
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/ kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk kkkkkkkkkkkkkkkkkkkkx

/[Task 1 - Sends Messages
static void prvFirst( void *pvParameters )

for(;;)

{
for (countl = 0; countl < MAX_LOOPS; countl++)

{
if(xQueueSendToBack(xQueue, msg_buf,
portMAX_DELAY)!=pdPASS)

/INothing could be sent blocking timer expired
xil_printf("Sent Blocking Timer Ran Out \r\n");

vTaskDelete(xHandleFirst); //Delete Task 1
//************************************************* *kkkkkkkkkkkkkkkkkkk
/[Task 2

static void prvSecond( void *pvParameters )

for(;;)

{
for (count2 = 0; count2 < MAX_LOOPS; count2++)
{
if(xQueueReceive(xQueue, recv_buf, portMAX_DELAY pdPASS)
/INothing Received because blocking timer eagbir
xil_printf("Receive Blocking Timer Ran Out \Fjn
}
}
vTaskDelete(xHandleSecond); //Delete Task 2
}
}
//************************************************* *kkkkkkkkkkhkkkkkkkhkkk
void vApplicationMallocFailedHook( void )
{

I* vApplicationMallocFailedHook() will only be chdd if
configUSE_MALLOC_FAILED_HOOK is set to 1 in FreeRBConfig.h. It is a hook
function that will get called if a call to pvPortoc() fails.

pvPortMalloc() is called internally by the kernahenever a task, queue or
semaphore is created. It is also called by vargarts of the demo

application. If heap_1.c or heap_2.c are useh the size of the heap

available to pvPortMalloc() is defined by configT®L_HEAP_SIZE in
FreeRTOSConfig.h, and the xPortGetFreeHeapSizZe(¥unction can be used

to query the size of free heap space that renfaltiough it does not

provide information on how the remaining heap rhlgg fragmented). */
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taskDISABLE_INTERRUPTS();
for(;;);
}

/ kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk kkkkkkkkkkkkkkkkkkkk
void vApplicationStackOverflowHook( xTaskHandle *pask, signed char *pcTaskName )
{

(void ) pcTaskName;

(void ) pxTask;

/* vApplicationStackOverflowHook() will only be dad if
configCHECK_FOR_STACK_OVERFLOW is set to eithenrl2. The handle and name
of the offending task will be passed into the hatkction via its
parameters. However, when a stack has overfloivedpossible that the
parameters will have been corrupted, in which theg@xCurrentTCB variable
can be inspected directly. */
taskDISABLE_INTERRUPTS();
for(;;);
}

//************************************************* kkkkkkkkkkkkkkkkkkkk

void vApplicationSetupHardware( void )

{
}

/* Do nothing */
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APPENDIX D
DEADLOCK-BREAK TIME CODE

¥ s
Author: Timothy J Boger
Date: 4/29/13

Deadlock Break-Time Benchmark

OS:FreeRTOS

Platform: ZC702 Evaluation Board

References: - “FreeRTOS Port for Xilinx Zynq Deagt FreeRTOS Ltd. February 12, 2013.
- R. Kar.. "Implementing the Rheaiee Real-Time Benchmark". 1990.
- Cory Nakaji. "MIO, EMIO and AXI GPIO LE®for ZC702". 2013.

[H e */

/I Includes

#include "FreeRTOS.h"

#include "task.h"

#include "queue.h"

#include "timers.h"

#include "xil_printf.h"

#include "stdio.h"

#include "xparameters.h”

#include "xgpio.h"

#include "xgpiops.h"

#include "semphr.h"

/ kkkkkkkkkkkkkkkhkkkkkkkkkkx

IIAX] Variables
static XGpioPs emio_pmod2;

#define EMIO_54 54
#define EMIO_55 55
#define EMIO_56 56
#define EMIO_57 57

//**************************

/IBenchmark Variables

#define MAX_LOOPS 10000 //Max loops for simulatid®000

#define ONE_TICK 480000 //Number dependent on QRUkt be longer than sleep period.
/[The amount of for loop iterations per oneiinipt tick

#define ONE_TICK_AVERAGE 475620

unsigned long countl = 0, count2 = 0, count3 = 0;

unsigned long i, j;
unsigned long dead_brk; // 1=Yes 0= No

/ kkkkkkkkkkkkkkkhkkkkkkkhkkkkkkkhkkkkkkhkhkkkkkkkkkhkkkx kkkkkkhkk
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/I Priorities at which the tasks are created

#define mainFIRST_TASK_PRIORITY (tskIDLE_PRIORIT2)
#define mainSECOND_TASK_PRIORITY  (tskIDLE_PRIORITY3)
#define mainTHIRD_TASK_PRIORITY (tskIDLE_PRIORITY 4)

#define mainFOURTH_TASK_PRIORITY (tskIDLE_PRIORIT¥5))

/ kkkkkkkkkkkkkhkkkkkkkkkkkkkkkkhkkkkkkkhkkkkkhkkkhkkkkx *kkkkkkk

//Associate Functions with Tasks

static void prvFirst( void *pvParameters );
static void prvSecond( void *pvParameters );
static void prvThird( void *pvParameters );
static void prvFourth( void *pvParameters );

//************************************************* *kkkkkkk

/ITask Handle

xTaskHandle xHandleFirst;
xTaskHandle xHandleSecond;
xTaskHandle xHandleThird;
xTaskHandle xHandleFourth;

xSemaphoreHandle xMutex;

/ kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk *kkkkkkk
//Main
int main( void )
prvinitializeExceptions();
/ kkkkkkkkkkkkkhkkkkhkkkhkkkhkkkhkkhkkkkkkkkhkkkhkhkhkkhkkkkhkkk *kkkkkk
/IAX] Setup

XGpioPs_Config *ConfigPtrPS;

ConfigPtrPS = XGpioPs_LookupConfig(0);
XGpioPs_Cfglnitialize(&emio_pmod2, ConfigP8P
ConfigPtrPS->BaseAddr);

//******************************************* *kkkkkkkkkkk

//Setup PMOD 2 pins
XGpioPs_SetDirectionPin(&emio_pmod2, EMB3, 1);
XGpioPs_SetOutputEnablePin(&emio_pmod2 |@M4, 1);
XGpioPs_SetDirectionPin(&emio_pmod2, EMES, 1);
XGpioPs_SetOutputEnablePin(&emio_pmod2 JEN55, 1);
XGpioPs_SetDirectionPin(&emio_pmod2, EMBB, 1);
XGpioPs_SetOutputEnablePin(&emio_pmod2 JEN56, 1);
XGpioPs_SetDirectionPin(&emio_pmod2, EMETF, 1);
XGpioPs_SetOutputEnablePin(&emio_pmod2 |BM7, 1);

//******************************************* *kkkkkkkkkkk

//[Setup PMOD 2 outputs to zero
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XGpioPs_WritePin(&emio_pmod2, EMIO_54, dx0
XGpioPs_WritePin(&emio_pmod2, EMIO_55, x0
XGpioPs_WritePin(&emio_pmod2, EMIO_56, Jx0
XGpioPs_WritePin(&emio_pmod2, EMIO_57, Ox0

//************************************************ *kkkkkk

//Start Benchmark

xil_printf("Start of Deadlock Break-Time Benchmark");
xil_printf("Each task runs %D times\r\n", MAX_LOGH},

/************************************************* kkkkkkkkkkkkkkkk

Execution Time Measurement Without Deadlocks

Create four tasks.
Task 1 Lowest Priority
Task 2 Medium Priority. Only uses CPU time arekpk periodically.
Task 3 Highest Priority. Potential deadlock wiiteries to gain control
of the "region” resource, because low-prioritsktaolds region mostly.

Task 4 controls the start and finish of the pangiand sets the GPIO pin

Note: when dead_brk = 0;

/************************************************ kkkkkkhkkkkkkkhkkkk

Deadlock Resolution Measurement

Create four tasks.
Task 1 Lowest Priority
Task 2 Medium Priority. Only uses CPU time arekpk periodically.
Task 3 Highest Priority. Potential deadlock witdries to gain control
of the "region" resource, because low-priorisktaolds region mostly.

Task 4 controls the start and finish of the pangiand sets the GPIO pin
Measure the time between the High and Low GPItpwiu

Note: when dead_brk = 1;

/************************************************* *********************/

/ISET DESIRED BENHCMARK VALUE HERE:
dead_brk = 1; //Run tasks with/without deadlogkid = without, 1 = with
countl = count2 = count3 = 0; //Initialize cosint

/ICreate Semaphore
xMutex = xSemaphoreCreateMutex();

if (dead_brk == 0)
{

}

else

{

xil_printf("Start Execution Time Measurement With Deadlocks\r\n");
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xil_printf("Start Deadlock Resolution Measuremant);
}

/[Create four tasks

xTaskCreate( prvFirst, ( signed char *) "FI",
configMINIMAL_STACK_SIZE, NULL,
mainFIRST_TASK_PRIORITY, &xHandleFirst );

xTaskCreate( prvSecond, ( signed char *) "S",
configMINIMAL_STACK_SIZE, NULL,
mainSECOND_TASK_PRIORITY, &xHandleSecond );

xTaskCreate( prvThird, ( signed char *) "T",
configMINIMAL_STACK_SIZE, NULL,
mainTHIRD_TASK_PRIORITY, &xHandleThird );

xTaskCreate( prvFourth, ( signed char *) "FO",
configMINIMAL_STACK_SIZE, NULL,
mainFOURTH_TASK_PRIORITY, &xHandleFourth );

vTaskStartScheduler();

/* If all is well, the scheduler will now be rum@, and the following line

will never be reached. If the following line da@secute, then there was
insufficient FreeRTOS heap memory available feritie and/or timer tasks
to be created. See the memory management sectitire FreeRTOS web site
for more details. */

for(;;);

//************************************************* kkkkkkkkkkkkkkhkkkkhkk

/[Task 4
static void prvFourth( void *pvParameters )

for(;;)
{
//Runs First due to having highest priority
XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x15ét GPIO
HIGH

vTaskPrioritySet(xHandleFourth, tskIDLE_PRIORIF 1);
/lreduce priority below Task 1 and 2

Il Task will yield hereReturns when Task 1, 2, and 3 delete themselves

XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x05ét GPIO

LOW
xil_printf("Measurement Done\r\n");
vTaskDelete(xHandleFourth); //Delete Task 4
}
}
//************************************************* *kkkkkkkkkkhkkkkkkkhkkk
/[Task 1
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/I Lower Priority task.
static void prvFirst( void *pvParameters )

for(;;)
{
if (countl == MAX_LOOPS)
{
vTaskDelete(xHandleFirst); //Delete Task 1
}

xSemaphoreTake(xMutex, portMAX_DELAY); //Take ¢t
for (i= 0; i < ONE_TICK; i++) //delay loop

//Do Nothing

xSemaphoreGive(xMutex); //Release control

countl++;
/ kkkkkkkkkkkhkkkkkkhkkkhkkhkkhkhkkkkhkkkhkhkkhkkkhkkkhkhkkkhkkkx *kkkkkkkkkkhkkkkkkkhkkk
/[Task 2

/I Medium priority task. Only uses CPU time ancegl@eriodically.
static void prvSecond( void *pvParameters )

for(;;)
{
for(;;)
{
if (count2 == MAX_LOOPS)
{
vTaskDelete(xHandleSecond); //Delete Task 2
}
for (j = 0; j < ONE_TICK/4; j++) /ldelay loop
{
/Do Nothing
}
vTaskDelay(1); //Delay a single tick
count2++;
}
}
;/*******************~k****~k************************ *kkkkkkkkkkhkkkkkkkhkkk
/[Task 3

/I High priority task. Potential deadlock whenries to gain control
/I of the "region" resource, because low-priorégk holds region mostly.
static void prvThird( void *pvParameters )
{
for(;;)
{
if (count3 == MAX_LOOPS)
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{

}
vTaskDelay(1); //Delay a single tick

i = ONE_TICK; //Reset Task 1

vTaskDelete(xHandleThird); //Delete Task 3

if (dead_brk == 1)

{
xSemaphoreTake(xMutex, portMAX_DELAY); //Takentwol
xSemaphoreGive(xMutex); //Release control
}
count3++;
}
}
//************************************************* *kkkkkkkkkkkkkkkkkkk

void vApplicationMallocFailedHook( void )

{

}

I* vApplicationMallocFailedHook() will only be chdd if
configUSE_MALLOC_FAILED_HOOK is set to 1 in FreeRBConfig.h. It is a hook
function that will get called if a call to pvPortoc() fails.

pvPortMalloc() is called internally by the kerwahenever a task, queue or
semaphore is created. It is also called by vararts of the demo
application. If heap_1.c or heap_2.c are useh the size of the heap
available to pvPortMalloc() is defined by configT@L_HEAP_SIZE in
FreeRTOSConfig.h, and the xPortGetFreeHeapSizZe(¥unction can be used
to query the size of free heap space that renfaltiough it does not

provide information on how the remaining heap rhigd fragmented). */
taskDISABLE_INTERRUPTS();

for(;;);

//************************************************* kkkkkkkkkkkkkkhkkkkhkk

void vApplicationStackOverflowHook( xTaskHandle *p&sk, signed char *pcTaskName )

{
(void ) pcTaskName;
(void ) pxTask;
/* vApplicationStackOverflowHook() will only be dad if
configCHECK_FOR_STACK_OVERFLOW is set to eithenrl2. The handle and hame
of the offending task will be passed into the héatction via its
parameters. However, when a stack has overfloiwedpossible that the
parameters will have been corrupted, in which theg@xCurrentTCB variable
can be inspected directly. */
taskDISABLE_INTERRUPTS();
for(;;);

//************************************************* *kkkkkkkhkkkkhkkkkkkkhkkk

void vApplicationSetupHardware( void )

{
}

/* Do nothing */
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APPENDIX E
SEMAPHORE SHUFFLE TIME CODE

¥ s
Author: Timothy J Boger
Date: 4/29/13

Semaphore Shuffle Benchmark

OS:FreeRTOS

Platform: ZC702 Evaluation Board

References: - “FreeRTOS Port for Xilinx Zynq Deagt FreeRTOS Ltd. February 12, 2013.
- R. Kar.. "Implementing the Rheaiee Real-Time Benchmark". 1990.
- Cory Nakaji. "MIO, EMIO and AXI GPIO LE®for ZzC702". 2013.

[H e */

/I Includes

#include "FreeRTOS.h"

#include "task.h"

#include "queue.h"

#include "timers.h"

#include "xil_printf.h"

#include "stdio.h"

#include "xparameters.h”

#include "xgpio.h"

#include "xgpiops.h"

#include "semphr.h"

/ kkkkkkkkkkkkkkkhkkkkkkkkkkx

IIAX] Variables
static XGpioPs emio_pmod2;

#define EMIO_54 54
#define EMIO_55 55
#define EMIO_56 56
#define EMIO_57 57

//**************************

/[Benchmark Variables
#define MAX_LOOPS 100000 //Max loops for simulatibO0000

unsigned long countl = 0, count2 = 0;
unsigned long sem_exe; // 1= Yes 0= No

/ kkkkkkkkkkkkkkkhkkkkkkkkkkkkkkhkkkkkkhkhkkkkkkkkkkkkx kkkkkkhkk

/I Priorities at which the tasks are created

#define mainFIRST_TASK_PRIORITY (tskIDLE_PRIORIT2)
#define mainSECOND_TASK_PRIORITY  (tskIDLE_PRIORITY2 )
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#define mainTHIRD_TASK_PRIORITY

//*************************************************

/IAssociate Functions with Tasks

static void prvFirst( void *pvParameters );
static void prvSecond( void *pvParameters );
static void prvThird( void *pvParameters );

//*************************************************

/ITask Handle

xTaskHandle xHandleFirst;
xTaskHandle xHandleSecond;
xTaskHandle xHandleThird;

xSemaphoreHandle xSemaphore;

/ kkkkkkkkkkkhkkkkkkhkkkhkkkhkkhkhkkkkhkkkhkhkkhkkkhkkkhkhkkkhkkkx
/Main
int main( void )

{

prvinitializeExceptions();

(tskIDLE_PRIORIT¥ 3)

*kkkkkkk

*kkkkkkk

*kkkkkkk

/ kkkkkkkkkkkkkkkkkkkhkkkkkkhkkkkkkkkkkkkkkkkkkkkk *kkkkkk

/IAX] Setup

XGpioPs_Config *ConfigPtrPS;

ConfigPtrPS = XGpioPs_LookupConfig(0);
XGpioPs_Cfglnitialize(&emio_pmod2, ConfigP8P

ConfigPtrPS->BaseAddr);

//******************************************* kkkkkkkkkkkk

//Setup PMOD 2 pins

XGpioPs_SetDirectionPin(&emio_pmod2, EMB3, 1);
XGpioPs_SetOutputEnablePin(&emio_pmod2 |@M4, 1);
XGpioPs_SetDirectionPin(&emio_pmod2, EMES, 1);
XGpioPs_SetOutputEnablePin(&emio_pmod2 JEN55, 1);
XGpioPs_SetDirectionPin(&emio_pmod2, EMBB, 1);
XGpioPs_SetOutputEnablePin(&emio_pmod2 JEN56, 1);
XGpioPs_SetDirectionPin(&emio_pmod2, EMETF, 1);
XGpioPs_SetOutputEnablePin(&emio_pmod2 |@M7, 1);

//******************************************* *kkkkkkkkkkk

//Setup PMOD 2 outputs to zero
XGpioPs_WritePin(&emio_pmod2, EMIO_54, dx0
XGpioPs_WritePin(&emio_pmod2, EMIO_55, 0
XGpioPs_WritePin(&emio_pmod2, EMIO_56, dx0
XGpioPs_WritePin(&emio_pmod2, EMIO_57, Ix0

//************************************************ *kkkkkk

//Start Benchmark
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xil_printf("Start Semaphore Shuffle Benchmark\ji\r"
xil_printf("Each task runs %D times\r\n", MAX_LOGH},

/************************************************* kkkkkkkkkkkkkkhkk

Task Execution Time Without Semaphore Shufflingagurement

Create three tasks. Task 1 and Task 2 will perfie Task Execution.

Task 3 controls the start and finish of the pangiand sets the GPIO pin
Measure the time between the High and Low GPItpwu

Note: when sem_exe = 0;

/************************************************ *kkkkkkkkkkkkkkkk

Semaphore Shuffling Measurement

Create three tasks. Task 1 and Task 2 will perf®emaphore Shuffling.
Time it takes a Task to acquire a semaphordgtmatned by another equal priority task.

Task 3 controls the start and finish of the pangiand sets the GPIO pin
Measure the time between the High and Low GPItpwiu

Note: when sem_exe = 1,

/************************************************* *********************/

/ISET DESIRED BENHCMARK VALUE HERE:
sem_exe = 1; //Run tasks with/without semaphbuoéfing 0 = without, 1 = with

if (sem_exe == 0)

{
xil_printf("Start Measurement without Semaphohaiffling \r\n");
}
else
{
xil_printf("Start Task Semaphore Shuffling Measment\r\n");
/ICreate Semaphore
vSemaphoreCreateBinary(xSemaphore);
}

/ICreate three tasks

xTaskCreate( prvFirst, ( signed char *) "F",
configMINIMAL_STACK_SIZE, NULL,
mainFIRST_TASK_PRIORITY, &xHandleFirst );

xTaskCreate( prvSecond, ( signed char *) "S",
configMINIMAL_STACK_SIZE, NULL,
mainSECOND_TASK_PRIORITY, &xHandleSecond );

xTaskCreate( prvThird, ( signed char *) "T",
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configMINIMAL_STACK_SIZE, NULL,
mainTHIRD_TASK_PRIORITY, &xHandleThird );

vTaskStartScheduler();

/* If all is well, the scheduler will now be rum@, and the following line

will never be reached. If the following line da@secute, then there was
insufficient FreeRTOS heap memory available feritie and/or timer tasks
to be created. See the memory management sectitire FreeRTOS web site
for more details. */

for(;;);

//************************************************* kkkkkkkkkkkkkkhkkkkhkk

/[Task 3
static void prvThird( void *pvParameters )

for(;;)
{
//IRuns First due to having highest priority

XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x15ét GPIO
HIGH

vTaskPrioritySet(xHandleThird, tskiIDLE_PRIORITY1);
/lreduce priority below Task 1 and 2

Il Task will yield hereReturns when Task 1 and 2 delete themselves

XGpioPs_WritePin(&emio_pmod2, EMIO_54, 0x05ét GPIO

LOW
xil_printf("Measurement Done\r\n");
vTaskDelete(xHandleThird); //Delete Task 3
}
}
/ kkkkkkkkkkkhkkkkkhkkkhkkkhkkhkhkkkkhkkkkhkhkkhkkkhkkkhkhkkkhkkkx *kkkkkkkhkkkkhkkkhkkkkhkkk
/[Task 1

static void prvFirst( void *pvParameters )

for(;;)

{
for (countl = 0; countl < MAX_LOOPS; countl++)
{
if (sem_exe == 1)
{
xSemaphoreTake(xSemaphore, portMAX_DELAY);
}

taskYIELD();

if (sem_exe == 1)
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xSemaphoreGive(xSemaphore);
}
taskYIELD();

}
vTaskDelete(xHandleFirst); //Delete Task 1
}

/ kkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkk kkkkkkkkkkkkkkkkkkkkx

/[Task 2
static void prvSecond( void *pvParameters )

for(;;)
{
for (count2 = 0; count2 < MAX_LOOPS; count2++)
{
if (sem_exe == 1)
{
xSemaphoreTake(xSemaphore, portMAX_DELAY);

}
taskYIELD();

if (sem_exe == 1)
{

xSemaphoreGive(xSemaphore);
}
taskYIELD();
}
vTaskDelete(xHandleSecond); //Delete Task 2

}

/ kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk kkkkkkkkkkkkkkkkkkkkx

void vApplicationMallocFailedHook( void )

{
/* vApplicationMallocFailedHook() will only be ckdd if
configUSE_MALLOC_FAILED_HOOK is set to 1 in FreeRBConfig.h. It is a hook
function that will get called if a call to pvPortMloc() fails.
pvPortMalloc() is called internally by the kerwahenever a task, queue or
semaphore is created. It is also called by vargarts of the demo
application. If heap_1.c or heap_2.c are usemh the size of the heap
available to pvPortMalloc() is defined by configT®L_HEAP_SIZE in
FreeRTOSConfig.h, and the xPortGetFreeHeapSize(fu#nction can be used
to query the size of free heap space that renfaltiough it does not
provide information on how the remaining heap rhlgg fragmented). */
taskDISABLE_INTERRUPTS();
for(;;);

}

//************************************************* *kkkkkkkkkkkkkkkkkkkx

void vApplicationStackOverflowHook( xTaskHandle *p&sk, signed char *pcTaskName )
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(void ) pcTaskName;
(void ) pxTask;

/* vApplicationStackOverflowHook() will only be dad if
configCHECK_FOR_STACK_OVERFLOW is set to eithenrl2. The handle and name
of the offending task will be passed into the h&nction via its
parameters. However, when a stack has overfloivedpossible that the
parameters will have been corrupted, in which tasg@xCurrentTCB variable
can be inspected directly. */
taskDISABLE_INTERRUPTS();
for(;;);
}

//************************************************* kkkkkkkkkkkkkkhkkkkhkk

void vApplicationSetupHardware( void )

{
}

/* Do nothing */
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